

基于周丛藻类的雅鲁藏布江流域水生态系统健康评价

王纤纤 刘乐乐 杨学芬 杨瑞斌 刘海平

USING PERIPHYTON ALGAE TO ASSESS STREAM CONDITIONS OF YARLUNG ZANGBO RIVER BASIN

WANG Xian-Xian, LIU Le-Le, YANG Xue-Fen, YANG Rui-Bin, LIU Hai-Ping

在线阅读 View online: https://doi.org/10.7541/2021.2021.039

您可能感兴趣的其他文章

Articles you may be interested in

基于附石藻类生物完整性指数对汝溪河水生态系统健康的评价

USING EPILITHIC ALGAE ASSEMBLAGES TO ASSESS STREAM HEATH OF THE RUXI RIVER, CHINA

水生生物学报. 2017, 41(1): 228-237 https://doi.org/10.7541/2017.29

三峡水库水生态系统健康评价

ASSESSING THE ECOLOGICAL HEALTH STATUS OF THE THREE GORGE RESERVOIR

水生生物学报. 2019, 43(S1): 49-55 https://doi.org/10.7541/2019.166

底栖硅藻应用于河流生态系统健康评价的研究进展

A REVIEW OF DIATOMS IN BIOMONITORING AND ECOSYSTEM HEALTH ASSESSMENT

水生生物学报. 2018, 42(1): 212-220 https://doi.org/10.7541/2018.027

基于Cyt b基因的雅鲁藏布江下游墨脱江段及察隅河墨脱裂腹鱼的遗传多样性及种群历史动态分析

GENETIC DIVERSITY AND POPULATION DEMOGRAPHY OF *SCHIZOTHORAX MOLESWORTHI* FROM THE MOTUO AREA OF LOWER REACHES OF THE YARLUNG ZANGBO RIVER AND LOHIT RIVER

水生生物学报. 2019, 43(5): 923-930 https://doi.org/10.7541/2019.109

雅鲁藏布江双须叶须鱼种群资源现状及其渔业管理对策

POPULATION RESOURCES AND FISHERY MANAGEMENT POLICIES OF *PTYCHOBARBUS DIPOGON* IN THE YARLUNG ZANGBO RIVER

水生生物学报. 2020, 44(1): 170-179 https://doi.org/10.7541/2020.020

淡水生态系统中几种大DNA病毒研究概述

AN OVERVIEW ON SEVERAL LARGE DNA VIRUSES IN FRESHWATER ECOSYSTEMS

水生生物学报. 2020, 44(5): 961-975 https://doi.org/10.7541/2020.112

关注微信公众号,获得更多资讯信息

doi: 10.7541/2021.2021.039

基于周丛藻类的雅鲁藏布江流域水生态系统健康评价

王纤纤^{1,2} 刘乐乐³ 杨学芬¹ 杨瑞斌^{1*} 刘海平^{2*}

(1. 华中农业大学水产学院, 武汉 430070; 2. 西藏自治区农牧科学院水产科学研究所, 拉萨 850002; 3. 西藏自治区动物疫病 预防控制中心(畜牧总站), 拉萨 850000)

摘要:为评估雅鲁藏布江流域水生态系统的健康状态,研究于2013年10月、2014年4月和2014年7月,在雅鲁藏 布江流域干流及其4大支流上设置了26个采样点,先对河流每个点位的海拔、坐标、河道底质类型及构成比 例、河岸植被类型、水电工程等环境数据进行收集,随后采集周丛藻类群落数据,并在此基础上构建了周丛 藻类生物完整性指数(P-IBI)评价指标体系,结果显示:调查期间,雅鲁藏布江流域干支流共观察到周丛藻类 7门10纲23目34科70属(种),硅藻门(35.71%)、绿藻门(32.86%)和蓝藻门(20.00%)为前3个优势门类,周丛藻类 的优势种均属于硅藻门,该水域属硅藻-绿藻-蓝藻型水体。周丛藻类Shannon-Wiener多样性指数的变幅为 4.84—9.41, Pielou均匀度指数的变幅为2.41—4.80,则表明雅鲁藏布江流域整体为轻污型-清洁型水体。周丛 藻类的Shannon-Wiener多样性指数、Pielou均匀度指数与P-IBI评价指标体系共同说明:雅鲁藏布江流域干流 上下游及其4大支流水生态系统的健康状态优于雅鲁藏布江流域干流中游的健康状态。研究雅鲁藏布江流域 水生态系统周丛藻类的群落特征和水环境的健康状态,一方面能为西藏土著鱼类食性、摄食机制等的研究提 供饵料数据基础,另一方面能对河流水生态系统的健康状况进行科学评价,从而保障西藏水生态安全。

关键词: 雅鲁藏布江流域; 周丛藻类; P-IBI; 水生态系统; 健康评价 中图分类号: Q145⁺.1 文献标识码: A 文章编号: 1000-3207(2022)12-1816-16

周丛藻类(Periphyton),又名着生藻类、底栖藻 类等^[1,2],是水生态系统中主要的生物类群之一,营 自养生活,其通过光合作用将太阳能转化为化学能 储存起来^[3],并产生和释放氧气,推动水生态系统中 的物质循环、能量流动和信息传递,是水生态系统中 的物质循环、能量流动和信息传递,是水生态系统 中食物链的开端。周丛藻类拥有较高的初级生产 力,其种类丰富,附着生长,生活周期短,对水环境 变化敏感^[4,5],能吸附水体中的污染物,净化水质^[6], 且其种类组成和数量多寡,又会随水环境中水质理 化因子和污染物的变动和而发生相应的改变,加之, 周丛藻类的附着生活使其易于采集,所以,在急流 水域周丛藻类是重要的水质监测指示物种,常用于 水生态系统的健康评价中^[7—9]。

河流作为生命的摇篮,是自然生态系统中一种 主要的形态,随着人类对自然干预力度的增加,许 多河流面临天然水生态系统发生改变^[10]、水文情 势发生变化^[11]、河流连通性改变^[12]、水环境污染^[13]、 河道萎缩^[14, 15]和河道断流^[16, 17]等问题,这些问题直 接作用于水环境中的动植物,使得水体中的鱼、 虾、蟹、螺、浮游动植物、底栖动植物等的群落 结构、生物多样性和种群的稳定性受到威胁^[18],降 低河流的健康状态和生态服务功能。故对河流水 生态系统的健康状态进行科学的评估,逐渐成为了 国内外研究者关注的焦点,但若仅依靠水质理化因 子对河流进行健康评价,局限性较多,而依据生物 完整性指数(Index of Biological Integrity, IBI)体 系,则可从水生态系统结构与功能的角度,分析河 流的健康现状及其原因^[19],在李喆等^[7]对松花江、 刘园园等^[8]对三峡库区、张远等^[19]对辽河流域等的 研究中,均运用了生物完整性指数对水域进行健康 评价。

雅鲁藏布江流域平均海拔高、水温低、紫外

收稿日期: 2021-03-08;修订日期: 2021-07-14

基金项目: 西藏自治区科技计划重点研发项目(XZ201902NB02和XZ202001ZY0016N) 资助 [Supported by the Key Research and Development Projects of the Tibet Autonomous Region Science and Technology Plan (XZ201902NB02 and XZ202001ZY0016N)]

作者简介: 王纤纤(1995—), 女, 硕士研究生; 研究方向为水产养殖。E-mail: wangxianxianlele@163.com

通信作者:杨瑞斌(1970—),教授;研究方向为水产健康养殖。E-mail: rbyang@mail.hzau.edu.cn 刘海平(1981—),研究员;研究方向为 高原渔业养护研究。E-mail: luihappying@163.com *共同通信作者

辐射强,是西藏境内最为主要的自然水生态系统, 能调节西藏的气候特征,具有众多低海拔河流所不 具有的特殊地貌及生态条件,其生态环境十分敏感 脆弱,极易受到全球气候变化和人类活动干扰等事 件的影响,保证其水环境拥有较高的健康状态,是 守护西藏绿水青山的重要基础,研究雅鲁藏布江流 域水生态系统中有机生命体的组成和无机生活环 境的状态等,将对整个流域的可持续发展有积极的 推动作用。目前,对雅鲁藏布江流域进行健康评价 的研究报道较为少见,故本文将以雅鲁藏布江流域 的周丛藻类为研究对象,利用周丛藻类来构建适合 于雅鲁藏布江流域的生物完整性指数(Periphvtic index of biological integrity, P-IBI)综合评价指标体 系^[20], 以期对研究区域的水生态系统健康状况进行 科学评价,这将为西藏土著鱼类食性和摄食机制等 的研究提供饵料数据基础,也能科学评价该区域河 流水生态系统的健康状况,是保障西藏水生态安全, 实现资源可持续发展与环境保护等作用的基础。

1 材料与方法

1.1 研究区域和采样时间

雅鲁藏布江流域位于冈底斯-念青唐古拉山脉 和喜马拉雅山脉之间^[21],起源于中国西藏自治区日 喀则市仲巴县境内的杰马央宗曲,依据流域地形特 征与气候类型对河道进行分区:杰马央宗曲至拉孜 为上游,是水流平缓的高原宽谷地带,河流两岸以 新月形沙丘居多,为高原寒温带半干旱气候,年平均 降水量<300 mm,流域面积2.67×10⁴ km²,长约268 km, 总落差1190 m,占干流总落差的21.9%;拉孜至派镇 为中游,河谷宽窄交错,河流两岸以河漫滩与阶地 居多,多为高原温带半干旱气候,年平均降水量300— 600 mm,流域面积16.5×10⁴ km²,长约1293 km,总 落差1520 m,占干流总落差的28.1%;派镇至巴昔 卡为下游,河道曲折迂回,水流湍急,河谷峡深,高 温多雨,年平均降水量>4000 mm,流域面积5.03× 10⁴ km²,长约496 km,总落差2725 m,占干流总落差 的50.0%^[22,23]。帕隆藏布江、尼洋河、拉萨河和年 楚河是雅鲁藏布江流域下游至上游沿岸的一级支 流(图 1)。雅鲁藏布江流域属高原季风温带半干旱 气候,有明显的干湿季,气候垂直差异明显,其流域 常年低温,年平均最低气温为-3℃,年平均最高气 温为16.2℃,昼夜气温温差可达14.7—16.5℃,每年 5—9月为集中降雨期,降水量可达全年的80%^[24], 是西藏境内最为主要的自然水域。

本研究在雅鲁藏布江流域干支流上设置了 26个采样点,并先后于2013年10月、2014年4月和 2014年7月,开展了3次采样工作。每个采样点均用 GPS定位,采样前需记录每个点位的海拔、坐标、 河道底质类型及构成比例、河岸植被类型、水电 工程等环境数据(表 1),随后进行周丛藻类样品的 采集。每次采样的同一采样点均需进行3次平行采 样,样点分布如下:

干流采样点设置:上游2个采样点,中游6个采 样点(中上游、中下游各设置3个采样点),下游3个 采样点;支流采样点设置:年楚河2个采样点,拉萨 河4个采样点、尼洋河4个采样点、帕隆藏布江5个 采样点(表 1)。

1.2 周丛藻类采集及物种鉴定

根据河道底质类型选择不同的采样方法,若底 质为黏土,在采样点河水中提前半个月放入20 cm× 20 cm的玻璃板,采样时刷取玻璃板上的周丛藻类, 若底质以卵石为主,各样点随机选取3—5块河流里 附有藻类的形状规整、易于测量表面积的石块,用 直径为3.5 cm的塑料盖盖在石块表面,并用拇指固 定石块和盖子,先用硬毛刷和蒸馏水将盖子以外的 周丛藻类清除,再用新的刷子将选取表面积的周丛 藻类刷下。用蒸馏水多次冲洗玻璃板或石块,待冲 净,将周丛藻类刷液全部转入500 mL采样瓶中,立

即用甲醛溶液固定,带回实验室避光静置48h后,浓 缩至50 mL样品瓶中,以待后续分析^[25]。

周丛藻类种类鉴定与计数。周丛藻类的鉴定 主要参照《中国淡水藻类》^[26]和《中国西藏硅 藻》^[27]。取处理好的样品,于面积为20 mm×20 mm. 容量为0.1 mL的计数板中,在10×40倍光学显微镜 下进行观察和计数,每片计数要大于300个,每个样 品进行2次平行计数,2次计数结果之差应小于15%, 否则重新计数,有效统计数值取平均值,所得均值 即为该片周从藻类的数量^[20]。

1.3 周丛藻类生物完整性指数(P-IBI)评价体系的 构建

P-IBI体系的建立:采样点数据资料收集-参考 点和污染点的确定-备选指标的筛选与确定-备选指 标赋分-P-IBI体系健康评价。

(1)采样点数据资料收集:对周从藻类的每一个 采集地所属的河道特征和周边环境数据进行记录 和拍照留影:

(2)参考点和污染点的确定:人类对西藏河流水 环境的开发和利用,相比于内地的其他河流程度较 低,依据参考文献[28,29]的方法,并结合西藏实际, 采样区域参考点需满足如下三个条件:①采样点无 人为干扰因素; ②采样点无明显人类活动干扰的迹 象,其上游无点污染源,且上、下游5 km之内无村 庄, 两侧100 m宽5 km长的范围内无农田: ③采样点 无明显工程建设,或工程建设未对河岸两侧植被、 附属沼泽湿地、河流水质等自然生境产生明显影 响。上述数据主要通过野外实地考察及实验室数 据分析获得。在本研究的26个样点中,结合表1可 知,有21个样点符合无干扰和干扰极小样点被用作 参照点,剩余的5个采样点为污染点(表 2)。

(3)备选指标的筛选与确定:根据已有的文献 [20], 选取12个应用广泛且入选率较高的指标作为 备选指标(表 3)。并对这12个备选指标依次进行:

	Tab. 1 Sampling point distribution and information							
采样点 Sampling point	采样地点 Sampling location	河段 Reach	经度 E Longitude	纬度 N Latitude	海拔 Elevation (m)	环境描述 Environment description		
Al	墨脱背崩乡	雅江下游	95°09′29.06″	29°14′24.57″	626	底质卵石		
A2	雅江多雄拉交汇处		95°09′54.77″	29°14′54.77″	655	河流交汇,底质卵石		
A3	墨脱县城上游		95°24′25.96″	29°14′24.82″	734	城市周边,底质卵石		
A4	米林县比定村渡口	雅江中游	94°06′10.16″	29°11′59.21″	2936	渡口、水文站,河滩沙化严重,底质砂砾		
A5	朗县尼阿多采石场		93°00′13.62″	29°02′48.08″	3097	采砂场,江边是流石滩,植被稀少,沙化严重, 底质卵石		
A6	桑日县古雪村		92°28′32.29″	29°15′10.92″	3335	峡谷, 流石滩, 下游有水电站, 底质卵石		
A7	乃东县检查站		91°15′38.82″	29°15′38.82″	3548	城郊,河滩沙化,底质黏土和石头		
A8	尼木县萨嘎村		90°12′28.91″	29°20'4.35"	3702	水文站,流石滩,大桥下,植物稀少,底质卵石		
A9	日喀则甲洼村		89°04'1.78"	29°19′30.21″	3817	植被丰富,水文站,底质黏土		
A10	谢通门县拉旺村	雅江上游	88°07′51.73″	29°21′8.21″	3917	石滩,水清澈,底质砂砾		
A11	拉孜县查务乡		87°34′37.73″	29°07′12.04″	4004	水文站,底质黏土和石头		
A12	波密县通麦乡	帕隆藏布江	95°03′59.72″	30°06′01.20″	2024	河流交汇,底质卵石		
A13	波密县索通村		95°18′09.40″	29°59′58.75″	2392	水流急,底质大卵石		
A14	波密县城附近		95°51′12.05″	29°48′05.85″	2814	城市周边,底质卵石		
A15	波密玉普乡		96°05′56.39″	29°44′59.98″	3271	水流急,底质大卵石		
A16	八宿县然乌镇		96°33′10.94″	29°31′47.87″	3732	湖泊引出河流,底质卵石		
A17	尼洋河雅江交汇处	尼洋河	94°27′21.93″	29°25′5.14″	2919	江河交汇,岸边有大型施工机器,底质砂砾		
A18	林芝镇尼洋河谷		94°27′10.78″	29°53′28.71″	2949	村镇,有施工采石车辆,河滩植物丰富, 底质黏土和石头		
A19	巴河尼洋河交汇处		93°42′54.67″	29°50'7.96"	3202	河流交汇,有施工车辆,机器,底质砂砾		
A20	工布江达巴村		93°12′18.67″	29°53′28.71″	3438	水文站,石滩植被丰富,底质砂砾		
A21	拉萨河雅江交汇处	拉萨河	90°48′35.08″	29°39′4.72″	3630	江河交汇,河岸覆植被,底质卵石		
A22	拉萨城郊		91°14′46.73″	29°39'4.72"	3667	水文站,有沼泽湿地,底质砂砾		
A23	甘丹寺附近		91°26′31.07″	29°46′0.20″	3712	水清澈,底质卵石		
A24	墨竹工卡 204 省道		91°45′40.73″	29°52′21.93″	3810	流石滩, 植被少, 水清, 底质砂砾		
A25	白朗县城郊桥下	年楚河	89°16′3.69″	29°06'3.84"	3897	城镇周边,底质黏土和石头		
A26	江孜县车仁乡		89°41′27.44″	28°51′2.93″	4010	植被较丰富,底质卵石		

表1 研究区域采样点分布及信息

表 2 采样点中参考点和污染点的划分

Tab. 2 The division of reference points and pollution points in sampling points

采样点	参考点	污染点	干扰因素
Sampling point	Reference point	Pollution point	Disturbing factor
A1	\checkmark		NN
A2	\checkmark		ITC
A3	\checkmark		NN
A4		\checkmark	FRR
A5		\checkmark	SDP
A6		\checkmark	HS
A7		\checkmark	SBB
A8		\checkmark	BDG
A9	\checkmark		NN
A10	\checkmark		NN
A11	\checkmark		NN
A12	\checkmark		ITC
A13	\checkmark		NN
A14	\checkmark		NN
A15	\checkmark		NN
A16	\checkmark		NN
A17	\checkmark		ITC
A18	\checkmark		NN
A19	\checkmark		ITC
A20	\checkmark		NN
A21	\checkmark		ITC
A22	\checkmark		NN
A23	\checkmark		NN
A24	\checkmark		NN
A25	\checkmark		NN
A26	\checkmark		NN

注: NN(无); SDP(采沙场); FRR(码头); BDG(桥梁); SBB(城郊); ITC(河流交汇); HS(水电站)

Note: SDP (dand quarry); FRR (pier); BDG (bridge); SBB (suburban); ITC (river confluence); HS (hydropower station)

指数值分布范围分析、判别能力分析、Pearson相 关性分析,以此筛选出合适的评价参数指标^[29]。 ①指数值分布范围分析:分析各指数值的分布范围 时, 需删除分布范围太窄、可预测环境变化值的范 围太小、分布散乱、标准差大、不稳定的指标,经 上述分析,备选指标全部适合无需剔除指标。②判 别能力分析:将监测期间的26个采样点,依据参考 点和污染点进行区分,随后以参考点和污染点为分 组原则,对12项备选指标绘制箱线图(Box plots),并 对12个箱线图中参考点与污染点箱体25%—75%分 位数范围,即箱体IQ(Interquartile ranges)的重叠部 分进行比较分析,当参考点与污染点的箱体没有重 叠部分,或有部分重叠,但参考点与污染点的中位 数值都不在对方箱体之内,则可进入下一步计算分 析(图 2),反之,则要剔除该项备选指标。③Pearson相关性分析:对通过判别能力分析的指标进行 Pearson相关性分析,依据相关性系数|r|>0.75,进行 指标选择,即:当几个指标的相关性>0.75时,只需 选出一个指标代替其余指标。

(4)备选指标赋分:①三分制法:对随干扰减小的指标,高于参考点的25%分位数值(对随干扰增大的指标,低于参考点的75%分位数值),计6分;低于25%分位数值(高于75%分位数值)的分布范围进行二等分,分别计3分和0分^[30]。②四分制法:对随干扰减小的指标,以所有点的95%分位数值为最佳期望值(对随干扰增大的指标,以所有点的5%分位数 值为最佳期望值),低于(高于)此值的分布范围进行 三等分,依次计6、4、2、0分^[20]。③比值法:对随 干扰增强,指数值减小的指标,95%分位数值为最 佳期望值,各指标的分值等于指标值除以所有点的 95%分位数值;对随干扰增大的指标,以所有点的

₽

指标代码 Code	备选指标 Alternative indicator	指标描述 Indicator description	对干扰的反映 Response to interference
M1	周丛藻类分类单元数	周丛藻类的门类数目	上升
M2	非硅藻属类单元数	除硅藻外属的数目	下降
M3	Shannon-Wiener多样性指数	$H'=-\sum p_i \ln p_i, p_i$ 为第 i 种的个体数百分比	下降
M4	Pielou 均匀度指数	J=H'/lnS,H'为Shannon-Wiener多样性指数	下降
M5	硅藻商	硅藻中心纲个体总数/硅藻羽纹纲个体总数	上升
M6	周丛藻类物种总数	周丛藻类的物种数目	下降
M7	周丛藻类总生物量	周丛藻类总的生物量	上升
M8	周丛藻类密度	周丛藻类总细胞数	上升
M9	硅藻物种数	硅藻门的物种数目	下降
M10	硅藻密度百分比	硅藻细胞数/周丛藻类总细胞数×100%	下降
M11	硅藻+绿藻密度百分比	硅藻 + 绿藻细胞数/周丛藻类总细胞数 ×100%	下降
M12	前三优势种百分比	前三种优势种细胞数/周丛藻类总细胞数 ×100%	上升

Tab. 3 P-IBI alternative indicator description and its response to interference

5%分位数值为最佳期望值进行计算,方法为:(最大值-指数值)/(最大值-5%分位数值),该法规定,经计算后分值的分布范围为0—1,若大于1,则记为1^[29]。

(5)P-IBI体系健康评价:以参考点P-IBI值分布 的25%分位数作为健康评价的标准,若采样点的P-IBI值大于25%分位数值,则表示该样点受到的干扰 很小,水环境是健康的;对小于25%分位数值的分 布范围进行四等分,分别确定为健康、亚健康、一 般、较差、极差五个健康等级^[29]。

1.4 数据分析

采用物种丰富度(Species Richness, SR), 总丰度(Total Abundance, TA), Shannon-Wiener多样性指数(Shannon-Wiener Index, SH, *H*)和Pielou均匀度指数(Pielou index, PI, *J*)对周丛藻类的群落稳定性和分配均匀度等进行分析。本研究根据各采样点周丛藻类出现的频率和相对丰度, 采用Mcnaughton优势度指数(*Y*)来判定雅鲁藏布江流域周丛藻类优势种组成。具体如下: (1)物种丰富度(Species Richness, SR): 指某一采样点或者季节出现的物种个数^[31]。 (2)总丰度(Total Abundance, TA): 指某一采样点或者季节单位面积出现的周丛藻类细胞个体数(cells/cm²)^[31]。(3)Shannon-Wiener指数*H*^[32]

$$H' = -\sum_{i=1}^{s} p_i \ln p$$

式中, *H*′值0—1为重污, 1—3为中污(1—2为α-中污型, 2—3为β-中污型), >3为轻污或无污; *p*_i为周丛藻 类*i*占全部周丛藻类的比例(*N*%)。

(4)Pielou均匀度指数J^[33]

 $J=H'/\ln S$

式中, J值0-0.3为多污型, 0.3-0.4为a-中污型,

图 2 符合判别能力筛选条件的2类箱线图^[29]

Fig. 2 Types of box plots that meet the screening conditions of discriminant ability

箱线图中的大长方形:表示25%—75%分位数值分布范围;箱线 图中的小长方形:表示中位数

Boxes are interquartile rages (25% to 75%); small squares are median value

0.4—0.5为β-中污型, >0.5轻污或清洁; S为周丛藻类 种类总数。

(5)出现频率:指某一周丛藻类出现的次数占所 有调查样点数的百分比^[31]。

(6)本研究采用Mcnaughton优势度指数(Y)来判 定雅鲁藏布江流域周丛藻类优势种组成,将调查时 间内周丛藻类的优势种根据每个种类的优势度值 (Y)来确定,即将Y>0.02的种类判定为调查水域的优 势种^[34]。公式如下:

 $Y=(n_i/N)\times f_i$

式中, n_i为第i种周丛藻类的个体数, N为所有周 丛藻类的总个体数, n_i/N为第i种周丛藻类的个体数 占所有藻类总个体数的比值, f_i为第i种周丛藻类出 现的频率。

本研究中的数据用Excel进行统计,同一采样 点所用周丛藻类数据均为3次采样平均值。用R 3.6.1计算物种丰富度(Species richness, SR)、总丰 度(Total abundance, TA)、Shannon-Wiener多样性 指数(H')、Pielou均匀度指数(J)和Mcnaughton优势 度指数(Y),并用Spss22.0对数据进行One-way AN-OVA单因素方差分析,差异显著水平为P<0.05,箱 线图的绘制和Pearson相关性的分析也使用Spss22.0。

2 结果

2.1 周丛藻类群落结构特征分析

周丛藻类的种类组成和优势种分析 采样 期间监测结果显示,雅鲁藏布江干流及其四大支流 共鉴定出周丛藻类70属(种),分别隶属于7门10纲 23目34科。如表 4所示,包括硅藻门(Bacillariophyta)、绿藻门(Chlorophta)、蓝藻门(Cyanophyta)、 黄藻门(Xanthophyta)、裸藻门(Euglenophyta)、隐 藻门(Cryptophyta)和金藻门(Chrysophyta),其中硅 藻门2纲4目9科25属,绿藻门2纲9目13科23属,蓝藻 门2纲5目7科14属, 黄藻门1纲2目2科2属, 裸藻门 1纲1目1科4属, 隐藻门和金藻门各1纲1目1科1属。 整个监测期所有采样点的周丛藻类优势门类所占 比例(图 3)、依次为硅藻门(35.71%)、绿藻门 (32.86%)、蓝藻门(20.00%)、裸藻门(5.71%)、黄藻 门(2.86%)、隐藻门(1.43%)和金藻门(1.43%),表明 周丛藻类的群落结构整体上均属于硅藻-绿藻-蓝藻 型水体。

以Mcnaughton优势度指数Y>0.02确定为优势 种^[34],如表4所示,整个调查期间,调查水域周丛藻 类的优势种有8属,且均归属于硅藻门,包括脆杆藻 科的3属,分别为针杆藻属(0.092)、脆杆藻属 (0.020)和等片藻属(0.132),舟形藻科的舟形藻属

表 4 雅鲁藏布江干流及其四大支流周丛藻类组成

Tab. 4 The periphyton algae composition of the sampling period of the main stream of the Yarlung Zangbo River and its four major tributaries

分类系统代码 Classification system (code)	出现频率 Frequency of occurrence (%)	占总个体 数比值 Percentage of the total number of individuals	优势度 指数 Y	分类系统代码 Classification system (code)	出现频率 Frequency of occurrence (%)	占总个体 数比值 Percentage of) the total number of individuals (%)	优势度 指数 <i>Y</i>
硅藻门Bacillariophyta				鞘藻目Oedogoniales			
中心藻纲Centricae				鞘藻科Oedogoniaceae			
圆筛藻目Coscinodiscales				鞘藻Oedogonium PPL-16	0.85	0.01	0
圆筛藻科Coscinodiscaceae				刚毛藻目Cladophorales			
直链藻Melosira PPB-1	5.13	0.03	0	刚毛藻科Cladophoraceae			
小环藻Cyclotella PPB-2	7.69	0.01	0	刚毛藻Cladophora PPL-17	0.43	0.00	0
羽纹纲Pennatae				双星藻纲 Zygnematophyceae			
无壳缝目Araphidiales				双星藻目Zygnematales			
脆杆藻科Fragilariaceae				双星藻科Zygnemataceae			
星杆藻Asterionella PPB-3	1.71	0.04	0	双星藻Zygnema PPL-18	2.14	0.00	0
针杆藻Synedra PPB-4	79.91	11.54	0.092	转板藻Mougeotia PPL-19	4.27	0.01	0
脆杆藻Fragilaria PPB-5	66.67	3.05	0.020	水绵Spirogyra PPL-20	6.41	0.07	0
等片藻Diatoma PPB-6	81.62	16.17	0.132	鼓藻目Desmidiales			
蛾眉藻Ceratoneis PPB-7	32.91	0.21	0.001	鼓藻科Desmidiaceae			
拟壳缝目Raphidionales				新月藻Closterium PPL-21	0.85	0.00	0
短缝藻科Eunotiaceae				鼓藻Cosmarium PPL-22	3.42	0.01	0
短缝藻Eunotia PPB-8	1.28	0.00	0	圆丝鼓藻Desmidium PPL-23	0.43	0.00	0
双壳缝目Biraphidinales				蓝藻门Cyanophyta			
舟形藻科Naviculaceae				蓝藻纲Cyanophyceae			
肋纹藻Frustulia PPB-9	1.28	0.00	0	色球藻目CHroococcales			
布纹藻Gyrosigma PPB-10	5.13	0.00	0	色球藻科Chroococcaceae			
双壁藻Diploneis PPB-11	0.43	0.00	0	平裂藻Merismopedia PPC-1	1.28	0.02	0
美壁藻Caloneis PPB-12	5.56	0.06	0	聚球藻科			
辐节藻Stauroneis PPB-13	2.99	0.00	0	Synechococcaceae 蓝纤维藻Dactylococcopsis PPC-2	5.98	0.02	0
羽纹藻Pinnularia PPB-14	27.78	0.11	0	星球藻Asterocapsa PPC-3	0.43	0.00	0
舟形藻Navicula PPB-15	61.54	11.76	0.072	色球藻Chroococcus PPC-4	1.28	0.02	0
桥弯藻科Cymbellaceae				粘球藻Gloeocapsa PPC-5	0.85	0.00	0
双眉藻Amphora PPB-16	37.61	0.23	0.001	管孢藻目 Chamaesiphonales			
桥弯藻 <i>Cymbella</i> PPB-17	56.84	7.11	0.040	厚皮藻科Pleurocapsaceae			
异极藻科Gomphonemaceae				厚皮藻Pleurocapsa PPC-6	2.56	0.00	0
双楔藻 <i>Didymosphenia</i> PPB- 18	25.21	0.05	0	段殖体目Hormogonales			
异极藻Gomphonema PPB- 19	59.40	5.27	0.031	针枝藻科Stigonemataceae			
曲壳藻科Achnanthaceae				软管藻Hapalosiphon PPC-7	7.69	0.02	0
卵形藻Cocconeis PPB-20	11.97	0.06	0	念珠藻目Nostocales			
真卵形藻Eucocconeis PPB- 21	24.36	0.33	0.001	胶须藻科Rivulariaceae			
曲壳藻Achnanthes PPB-22	86.75	19.06	0.165	胶须藻Rivularia PPC-8	0.85	0.00	0
菱形藻科Nitzschiaceae				念珠藻科Nostocaceae			
菱形藻Nitzschia PPB-23	84.1	22.97	0.193	東丝藻Aphanizomenon PPC-9	0.43	0.00	0

							续表4
分类系统代码 Classification system (code)	出现频率 Frequency of occurrence (%)	占总个体 数比值 Percentage of the total number of individuals (%)	优势度 指数 <i>Y</i>	分类系统代码 Classification system (code)	出现频率 Frequency of occurrence (%)	占总个体 数比值 Percentage of the total number of individuals (%	优势度 指数 <i>Y</i>
双菱藻科Surirellaceae				念珠藻Nostoc PPC-10	2.99	0.00	0
波缘藻 <i>Cymatopleura</i> PPB-	5.98	0.05	0	藻殖段纲			
24 双菱藻 <i>Surirella</i> PPB-25	14.53	0.16	0	Hormogonophyceae 颤藻目Oscillatoriales			
绿藻门Chlorophta				颤藻科Oscollatoriaceae			
绿藻纲Chlorophyceae				颤藻Oscollatoria PPC-11	41.03	0.62	0.003
团藻目Volvocales				毛丝藻Chaetonema	0.85	0.01	0
衣藻科 Chlamydomonadaceae				PPC-12 鞘丝藻Lyngbya PPC-13	24.79	0.30	0.001
衣藻 <i>Chlamydomonas</i> PPL-1	0.43	0.00	0	胶鞘藻 <i>Phormidium</i> PPC-14	23.93	0.23	0.001
绿球藻目Chlorococcales				裸藻门Euglenophyta			
小樁藻科Characiaceae				裸藻纲Euglenophyceae			
小椿藻Characium PPL-2	2.56	0.00	0	裸藻目Euglenales			
绿球藻Chlorococcum PPL-3	10.26	0.06	0	裸藻科Euglenaceae			
小球藻科Chlorellaceae				裸藻Euglena PPE-1	0.85	0.01	0
小球藻Chlorella PPL-4	9.83	0.01	0	扁裸藻Phacus PPE-2	0.85	0.00	0
蹄形藻 <i>Kirchneeriella</i> PPL-5	0.43	0.00	0	囊裸藻 <i>Trachelomonas</i> PPE-3	1.71	0.01	0
栅澡科Scenedesmaceae	0.40	0.00	0	枘保澡Colacium PPE-4	0.43	0.00	0
十字澡 <i>Crucigenia</i> PPL-6	0.43	0.00	0	黄澡 JXanthophyta			
栅澡 <i>Scenedesmus</i> PPL-7	3.85	0.06	0	黄澡纲Xanthophyceae			
丝澡目Ulotrichales				柄球澡目Mischococcales			
丝澡科Ulotrichales	7.26	0.04	0	肋胞澡科 Pleurochloridaceae 魚医藻 Mong/Jantua DDN 1	0.85	0.00	0
空保Ululiirix FFL-8 尾始蕩 <i>Unonama</i> DDI 0	5.12	0.04	0	単 励 澡 Monutuantus FF X-1	0.85	0.00	0
声田藻 <i>Klabsormidium</i> DDI	0.43	0.03	0	黄丝澡日Thomemataces			
10	0.45	0.00	0	页些获得THOOlemataceae			
微孢藻科Microsporaceae				黄丝藻 <i>Tribonena</i> PPX-2	5.98	0.05	0
微孢藻Microspora PPL-11	5.56	0.03	0	隐藻门Cryptophyta			
筒藻科Cylindrocapsaceae				隐藻纲Cryptophyceae			
筒藻Cylindrocapsa PPL-12	0.43	0.00	0	隐藻目Cryptomonadales			
胶毛藻目Chaetophorales				隐藻科Cryptomonadaceae			
胶毛藻科Chaetophoraceae				隐藻 <i>Cryptomonas</i> PPR	7.26	0.02	0
拟细链藻 <i>Leptosiropsis</i> PPL-13	0.43	0.00	0	金藻门Chrysophyta			
毛枝藻Stigeoclonium PPL-14	5.13	0.02	0	金藻纲Chrysophyceae			
石莼目Ulvales				水树藻目Hydrurales			
溪菜科Prasiolaceae				水树藻科Hydruraceae			
溪菜Prasiola PPL-15	0.43	0.00	0	水树藻Hydrurus PPS-1	2.56	0.01	0

(0.072), 桥弯藻科的桥弯藻属(0.040), 异极藻科的 异极藻属(0.031), 曲壳藻科的曲壳藻属(0.165), 菱 形藻科的菱形藻属(0.193)。

周丛藻类群落参数的空间分布 对26个采 样点进行监测发现,周丛藻类物种丰富度(SR)的空 间变化如下:如图 4可知,从干流到支流(A1—A26) 周丛藻类的SR逐渐增大,帕隆藏布江为雅鲁藏布江 干流下游的一级支流,其(A12—A16)周丛藻类的 SR明显大于雅鲁藏布江干流中下游(A2—A9)周丛 藻类的SR,尼洋河(A17—A20)、拉萨河(A21— A24)和年楚河(A25—A26)3条中上游支流周丛藻类 的SR明显大于雅鲁藏布江干流上游(A10—A11)周 丛藻类的SR。如图 5可知,周丛藻类总丰度(TA)的 空间变化如下:帕隆藏布江(A12—A16)周丛藻类的 TA明显大于雅鲁藏布江干流下游(A1—A3)周丛藻 类的TA,尼洋河(A17—A20)和拉萨河(A21—A24) 周丛藻类的TA明显大于雅鲁藏布江干流中游 (A4—A9)周丛藻类的TA,年楚河(A25—A26)周丛 藻类的TA明显大于雅鲁藏布江干流上游(A10—A11) 周丛藻类的TA。所以从流域整体来看,雅鲁藏布 江流域干流周丛藻类的SR和TA均稍低于其相应支 流周丛藻类的SR和TA。

监测期间发现,26个采样点周丛藻类的Shannon-Wiener多样性指数(H')的变幅为4.84—9.41,均 值为7.38(图 6)。H'值空间变化如下:除雅鲁藏布江 流域干流中游(A4—A6、A8)的H'值有极为明显的 向下波动外,其余水域的H'值波动范围较平缓,且 雅鲁藏布江干流下游墨脱背崩乡(A1)的H'值最大, 为9.41,雅鲁藏布江干流中游桑日县古雪村(A6)的 H'值最小,为4.84。由图 7可知, Pielou 均匀度指数

图 3 雅鲁藏布江流域周丛藻类的种类组成

图 4 雅鲁藏布江流域周丛藻类物种丰富度(SR)空间变化趋势 Fig. 4 The spatial variation trend of periphyton algae species richness in the Yarlung Zangbo River Basin

(J)的变幅为2.41—4.80,均值为3.30。J值空间变化如下:雅鲁藏布江流域中游干流部分点位(A4—A6、A8)及支流尼洋河(A17—A20)的J值稍低,但J值均>0.5,此外,其余水域均有较高的J值;且雅鲁藏布江干流下游的墨脱县城上游(A3)的J值最大,为4.80,尼洋河的巴河尼洋河交汇处(A19)的J值最小,为2.41。故周丛藻类的Shannon-Wiener多样性指数(H')和Pielou均匀度指数(J)共同表明:整个雅鲁藏布江流域的清洁状态较好,但干流中游水域的

图 5 雅鲁藏布江流域周丛藻类总丰度(TA)空间变化趋势

Fig. 5 The spatial variation trend of the total abundance of periphyton algae in the Yarlung Zangbo River Basin

图 6 雅鲁藏布江流域周丛藻类Shannon-Wiener多样性指数 (H)空间变化趋势

Fig. 6 The spatial variation trend of Shannon-Wiener diversity index of periphyton algae in the Yarlung Zangbo River Basin

图 7 雅鲁藏布江流域周丛藻类Pielou 均匀度指数(J)空间变化 趋势

Fig. 7 Spatial variation trend of the Pielou evenness index of periphyton algae in the Yarlung Zangbo River Basin

清洁状态稍低于其余调查水域。

参考点与污染点周丛藻类群落参数分析 如 表 2所示, 26个采样点被划分为21个参考点和5个污染点,将参考点和污染点周丛藻类的物种丰富度 (SR)、总丰度(TA)、Shannon-Wiener多样性指数 (H')和Pielou均匀度指数(J)进行单因素方差性分析 (表 5)。结果显示,参考点周丛藻类的SR显著大于 污染点周丛藻类的SR(P=0.014<0.05),参考点周丛 藻类的TA小于污染点周丛藻类的TA,但差异不显 著(P=0.326>0.05),参考点周丛藻类的H'显著大于 污染点周丛藻类的H'(P=0.005<0.05),参考点周丛 藻类的J大于污染点周丛藻类的J, 且差异不显著 (P=0.730>0.05)。

2.2 雅鲁藏布江流域健康评价

确定备选指标 判别能力分析(图 8)结果显示,非硅藻属类单元数(M2)、Shannon-Wiener多样性指数(M3)、周丛藻类物种种数(M6),共3个参数指标符合筛选规则,可进入下一步分析。

对上述步骤筛选出的3项指标进行Pearson相关 性检验(SPSS 22.0; 表 6), 结果显示, 非硅藻属类单 元数(M2)、Shannon-Wiener多样性指数(M3)和周 丛藻类物种种数(M6)的相关性系数两两之间均为 |r|<0.75, 符合备选要求。

依据以上筛选方法对12项周丛藻类的生物参数进行选择,最终P-IBI指数由非硅藻属类单元数(M2)、Shannon-Wiener多样性指数(M3)和周丛藻 类物种种数(M6)共3项指数构成。

P-IBI 体系指标分值计算及计分标准 将筛 选出的指标分别应用3分制法、4分制法、比值法 计算各指标分值(表 7—9)。

根据 3 分制法的计分标准(表 7),将筛选所得 指标的分值进行加和,即获得P-IBI值。以参考点的 25%分位数为最佳期望值,确定P-IBI指标体系评价 标准(表 10),进而得出各采样点周丛藻类生物完整 性评分即水环境健康状况评价,结果如下:在26个 采样点中,18个采样点水环境的健康状态评价结果 为健康,5个采样点水环境的健康状态评价结果为 亚健康,2个采样点水环境的健康状态评价结果为 一般,1个采样点水环境的健康状态评价结果为较差;三分制法对污染点的水环境健康状态评价结果为:较差-亚健康;三分制法对参考点的水环境健康状态评价结果为:亚健康-健康;三分制法对26个采样点整体的水环境健康状态评价结果为较差-健康(表 11)。

根据四分制法的计分标准(表 8),将筛选所得 指标的分值进行加和,即获得P-IBI值。以参考点的 25%分位数为最佳期望值,确定P-IBI指标体系评价 标准(表 12),进而得出各采样点周丛藻类生物完整 性评分即水环境健康状况评价,结果如下:26个采 样点中,16个采样点水环境的健康状态评价结果为 健康,3个采样点水环境的健康状态评价结果为亚 健康,4个采样点水环境的健康状态评价结果为一 般,3个采样点水环境的健康状态评价结果为为 定量,4个采样点水环境的健康状态评价结果为 定量,4个采样点水环境的健康状态评价结果为 定量,4个采样点水环境的健康状态评价结果为 行机法对污染点的水环境健康状态评价结果为; 较差-亚健康;四分制法对参考点的水环境健康状态评价结果为;一般-健康;四分制法对参考点的水环境健康状态评价结果为;较差-健康(表 13)。

根据比值法的计分标准(表 9),将筛选所得指标的分值进行加和,即获得P-IBI值。以参考点的25%分位数为最佳期望值,确定P-IBI指标体系评价标准(表 14),进而得出各采样点周丛藻类生物完整性评分即水环境健康状况评价,结果如下:在26个采样点中,16个采样点水环境的健康状态评价结果为亚健康,3个采样点水环境的健康状态评价结果为一般;比值法对污染点的水环境健康状态评价结果为一般-亚健康;比值法对参考点的水环境健康状态评价结果为

采用三分制法、四分制法和比值法对雅鲁藏 布江流域的21个参考点和5个污染点分别进行评分, 并对3类评分方法的参考点和污染点得分,进行判 别能力分析^[29](图 9),结果显示,以上3类评分方法 的判别能力都很高,均满足箱线图法的最佳规则, 即采用任何一种方法均适用于本调查水域的健康 评价。

表 5 参考点与污染点周丛藻类的群落参数(平均值±标准差)

Tab. 5 Periphyton algae community parameters at reference point and pollution point (mean±SD)

组别 Group	物种丰富度 SR(种)	总丰度 TA(×10 ⁵ cells/cm ²)	Shannon-Wiener 多样性指数H'	Pielou 均匀度 指数J
参考点Reference point	10.52±2.32 ^b	290.92±321.78	$7.64{\pm}0.87^{b}$	3.32±0.59
污染点Pollution point	7.6±1.67 ^a	460.46±536.21	6.28±0.93 ^a	3.21±0.80

注:表格中同列肩标无字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)

Note: In the same column, values with no superscripts mean no significant differences (P>0.05), different superscripts mean significant differences (P<0.05)

3 讨论

图 8 各入选 P-IBI 指标在参考点和污染点的箱线图

Fig. 8 Box plot of each selected P-IBI indicator at the reference point and pollution point

注: M3图中参考点的偏离点1对应采样点A1,为离群值 Note: the deviation point 1 of the reference point in the M3 figure correspond to the sampling point A1, which is an outlier

表 6 备选P-IBI指标的Pearson相关性分析

Tab. 6 Pearson correlation analysis of alternative P-IBI indicators

指标Index	M2	M3	M6
M2	1		
M3	0.367	1	
M6	0.680**	0.013	1

34科70属(种),周丛藻类的种类数稍多于学者们在 尼洋河调查发现的6门30科49属^[31]、谢通门江段的 6门67属^[35],这是因为尼洋河和谢通门江段均为雅 鲁藏布江流域的部分水面,其调查区域范围稍小于 本研究。但与内地水域相比本调查区域周丛藻类 的种数较少,这可能与调查水域常年低温有关,雅 鲁藏布江流域年平均气温为-3—16.2℃^[24],冬季水 温可低至2.8℃^[35],梁霞^[36]指出:大多数周丛藻类在 水温降到15℃以下,藻垫和着生基质间便开始发生 脱落,周丛藻类就开始大量凋亡,只有少数周丛藻 类能在低温水域长期生长繁殖,此外,高原环境中 超强的紫外辐射会损伤藻类的细胞结构,也会使水 环境中的藻类减少^[37]。

调查水域周丛藻类的优势种包括针杆藻、脆 杆藻、等片藻、舟形藻、桥弯藻、异极藻、曲壳 藻和菱形藻,优势种均隶属于硅藻门周丛藻类,这 与硅藻喜低温水环境生活有关^[38]。雅鲁藏布江流 域周丛藻类中的硅藻门、绿藻门和蓝藻门为前3个 优势门类,故该水域属硅藻-绿藻-蓝藻型结构,是典 型的高海拔河流水体类型^[39],这可能与河流主要依 靠冰山融雪补给,使得河流水质清瘦^[35],水体中营 养盐含量较低,供给周丛藻类的养分较少有关^[40]。

3.2 周丛藻类对雅鲁藏布江流域的健康评价

藻类物种多样性的变化和分布特征,既能直接 反映水体中藻类的多样性、均匀度和群落结构稳 定性等的状态,还能间接对水环境的健康状态进行 评价^[41—43],所以进行周丛藻类的生物多样性指数特 征性分析,对水生态系统的发展意义重大。依据 Shannon-Wiener多样性指数和Pielou均匀度指数数 值分布规律,数值越大说明周丛藻类的种类越丰富,

Tab. 7 The distribution of 3 P-IBI indicators in the reference point and the scoring standard of the 3-point system

	统计分	行行Statistical distr	ibution	计分标准Scoring standard			
指标Index	25%分位数 25% quantile	中位数 Median	75%分位数 75% quantile	6	3	0	
M2	7	11	15.5	>7	3.5—7	<3.5	
M3	6.94	7.54	7.91	>6.94	3.47-6.94	<3.47	
M6	8.56	10.56	12.39	>8.56	4.28-8.56	<4.28	

表 8	三个P-IBI 指标在所有样点中的分布及四分制法计分标准

Tab. 8 The distribution of 3 P-IBI indicators in all samples and the scoring standard of the 4-point system

指标	统计分布Statis	tical distribution	计分标准Scoring standard				
Index	5%分位数 5% quantile	95%分位数 95% quantile	6	4	2	0	
M2	2.35	18.3	>18.3	12.2—18.3	6.1—12.2	<6.1	
M3	5.26	9.39	>9.39	6.26—9.39	3.13-6.26	<3.13	
M6	5.63	14.83	>14.83	9.89—14.83	4.94—9.89	<4.94	

周丛藻类分布越均匀,水质状态越好^[44],反之,数值 越小说明周丛藻类的种类越稀少,周丛藻类分布越 不均匀,水质状态越差^[45]。在调查期间,Shannon-Wiener多样性指数(H')的变幅为4.84—9.41,均值为

表9 比值法计算3个 P-IBI 指标分值的公式

Tab. 9 The formula for calculating the scores of 3 P-IBI indicators by ratio method

指标 Index	5%分位数 5% quantile	95%分位数 95% quantile	对干扰的反映 Response to interference	计算公式 Calculation formula
M2	2.35	18.3	下降	M2/18.3
M3	5.26	9.39	下降	M3/9.39
M6	5.63	14.83	下降	M6/14.83

表 10 三分制法P-IBI体系评价标准

Tab. 10 3-point method P-IBI system evaluation standard

健康	亚健康	一般	较差	极差
Health	Sub-health	General	Poor	Verv bad
>15	11.25—15	7.5—11.25	3.75-7.5	<3.75

表11 三分制法P-IBI体系评价结果

Tab. 11 Evaluation results of the P-IBI system based on the 3-point system

采样点	采样点性质	P-IBI 值	健康状况
Sampling point	Sampling point nature	P-IBI value	State of health
A1	参考点	18	健康
A2	参考点	15	健康
A3	参考点	15	健康
A4	污染点	12	亚健康
A5	污染点	9	一般
A6	污染点	6	较差
A7	污染点	9	一般
A8	污染点	12	亚健康
A9	参考点	12	亚健康
A10	参考点	18	健康
A11	参考点	15	健康
A12	参考点	18	健康
A13	参考点	12	亚健康
A14	参考点	15	健康
A15	参考点	15	健康
A16	参考点	15	健康
A17	参考点	15	健康
A18	参考点	18	健康
A19	参考点	15	健康
A20	参考点	15	健康
A21	参考点	15	健康
A22	参考点	18	健康
A23	参考点	18	健康
A24	参考点	18	健康
A25	参考点	12	亚健康
A26	参考点	18	健康

7.38, 最小值>3(轻污或无污型水体)^[32], Pielou 均匀 度指数(J)的变幅为2.41—4.80, 均值为3.30, 最小值> 0.5(轻污或清洁型水体)^[33], 说明, 2013—2014年, 雅 鲁藏布江流域干支流整体上为轻污型-清洁型水体。

本研究基于周丛藻类的群落结构,利用周丛藻 类的群落参数(Shannon-Wiener多样性指数、Pielou 均匀度指数)和P-IBI评价指标体系对雅鲁藏布江流

表 12 四分制法P-IBI体系评价标准

Tab. 12 4-point method P-IBI system evaluation standard

健康	亚健康	一般	较差	极差
Health	Sub-health	General	Poor	Very bad
>9	6.75—9	4.5-6.7	2.25-4.5	<2.25

表 13 四分制法P-IBI体系评价结果

Tab. 13	Evaluation resu	lts of the P-IB	I system	based on	the 4-
point sys	tem				

采样点 Sampling point	采样点性质 Sampling point nature	P-IBI 值 P-IBI value	健康状况 State of health
A1	参考点	14	健康
A2	参考点	10	健康
A3	参考点	10	健康
A4	污染点	6	一般
A5	污染点	4	较差
A6	污染点	4	较差
A7	污染点	4	较差
A8	污染点	8	亚健康
A9	参考点	6	一般
A10	参考点	10	健康
A11	参考点	10	健康
A12	参考点	10	健康
A13	参考点	8	亚健康
A14	参考点	6	一般
A15	参考点	6	一般
A16	参考点	10	健康
A17	参考点	10	健康
A18	参考点	12	健康
A19	参考点	14	健康
A20	参考点	12	健康
A21	参考点	12	健康
A22	参考点	14	健康
A23	参考点	12	健康
A24	参考点	10	健康
A25	参考点	8	亚健康
A26	参考点	10	健康

表 14 比值法P-IBI体系评价标准

Tab. 14 Rati	o method P-IBI	system eva	luation standard
--------------	----------------	------------	------------------

健康	亚健康	一般	较差	极差
Health	Sub-health	General	Poor	Very bad
>1.87	1.40-1.87	0.94-1.40	0.47-0.94	<0.47

Tab. 15 Evaluation result of P-IBI system by ratio method 采样点 采样点性质 P-IBI 值 健康状况 Sampling point Sampling point nature P-IBI value State of health 参考点 2.424282874 健康 A1 A2 参考点 健康 2.166687325 参考点 健康 A3 2.34100831 污染点 亚健康 A4 1.685658268 A5 污染点 1.378786827 一般 污染点 一般 1.15888489 A6 污染点 1.212114653 一般 Α7 污染点 亚健康 1.652750646 A8 A9 参考点 1.487519247 亚健康 A10 参考点 2.124446613 健康 参考点 A11 1.902590806 健康 参考点 2.177969312 健康 A12 A13 参考点 1.655644884 亚健康 参考点 健康 A14 1.896483307 参考点 1.673205096 亚健康 A15 A16 参考点 1.837847045 亚健康 参考点 2.215788712 健康 A17 参考点 2.5539379 健康 A18 健康 参考点 A19 2.626512334 参考点 2.29007184 健康 A20 参考点 A21 2.14948491 健康 A22 参考点 2.743481143 健康 A23 参考点 健康 2.687728182 A24 参考点 2.153306829 健康 亚健康 A25 参考点 1.734677613 参考点 2.086615721 健康 A26

域水生态系统进行健康评价研究。结果显示:周丛 藻类群落的Shannon-Wiener多样性指数、Pielou均 匀度指数和P-IBI评价指标体系对雅鲁藏布江流域 的评价结果相一致。就周丛藻类群落的Shannon-Wiener多样性指数和Pielou均匀度指数而言,污染 点的Shannon-Wiener多样性指数和Pielou均匀度指 数均较参考点小,说明污染点的清洁状态较参考点 的清洁状态差。在P-IBI评价指标体系中,污染点未 有判定为健康状态的点位,这也表明污染点的清洁 状态较参考点的清洁状态差。由表 2可知,划定的 污染点全部分布于雅鲁藏布江流域干流上下游及其 4大支流水生态系统的健康状态优于雅鲁藏布江流 域干流中游的健康状态。

周丛藻类群落参数和P-IBI评价指标体系的评价结果,基本反映了雅鲁藏布江流域的水环境和生境质量特征。雅鲁藏布江流域干流下游水域设置的采样点周边无明显的水利水电工程建设,无采矿

和挖沙等的破坏,人为干扰较小,水质洁净,健康状 态好。雅鲁藏布江流域干流中游水域设置的采样 点的周边区域人类开发利用较大,出现了诸多如渡 口、采砂厂和水电站等工程建设,且河流沿岸两侧 的生境出现了植被减少,沙化严重的现象,虽周丛 藻类的Shannon-Wiener多样性指数和Pielou均匀度 指数仍符合轻污-清洁型水体标准,但数值显著减 小,说明周从藻类的生境已受采样点沿岸水利水电 作业的影响。雅鲁藏布江流域干流上游水域设置 的采样点的周边区域也建设有水文站,但采样点的 水质清澈,生境质量较好,故没有将其划分为污染 点。帕隆藏布江周从藻类Shannon-Wiener多样性 指数和Pielou均匀度指数均在A13号和A16号采样 点较低,与P-IBI评价指标体系对A13号和A16号采 样点的评价结果出现亚健康状态相一致,这与 A13号采样点水流极其湍急,不利于周丛藻类的附 着生长有关,A16号采样点在比值法赋分的P-IBI评 价指标体系中呈亚健康状态,在三分法和四分法赋 分的P-IBI评价指标体系中呈健康状态,这可能与人 工自河流引水入湖有关,且说明该采样点的人为引 水对周丛藻类的生境产生了影响,但影响不大,需 随时监测该点的水环境健康状态。尼洋河沿岸上 设置的4个采样点周边存在大型施工机器和施工采 石车辆,但采样点河岸两侧植被覆盖率高,自然生 境保存较为完整,拉萨河沿岸上设置的4个采样点 的周边生境质量较好,河岸两侧有大量的植被,沼 泽湿地生态较好,水质清澈,故尼洋河和拉萨河均 不划分为污染点,且P-IBI评价指标体系对尼洋河和 拉萨河流域的评价结果均为健康状态,与采样点周 丛藻类的Shannon-Wiener多样性指数和Pielou均匀 度指数均符合轻污-清洁型水体标准相一致,但尼 洋河和拉萨河采样点周丛藻类的Shannon-Wiener 多样性指数和Pielou均匀度指数均有向下波动,这 可能与沿岸施工或该区域人口密集有关,建议加强 对尼洋河和拉萨河流域水生态系统的监测。年楚 河沿岸设置了2个采样点,因A25号采样点在城镇周 边,可能受到城镇生活用水的影响,为亚健康状态, A26号采样点河畔植被丰富, P-IBI评价指标体系表 明其健康状态较好,这与该采样点拥有较高的周丛 藻类Shannon-Wiener多样性指数和Pielou均匀度指 数相一致。

文献[46—48]指出:人为干扰会影响周丛藻类的群落结构,从而指示水域不同等级的健康状态。 雅鲁藏布江流域是西藏境内最为主要的淡水来源, 保证其水环境的健康将成为守护西藏青山绿水的 基础,研究雅鲁藏布江流域水生态系统中有机生命

表 15 比值法P-IBI体系评价结果

Fig. 9 Analysis of discriminant ability of three types of scoring

注: 4分制法箱线图中参考点的偏离点4、9、10分别对应采样点A9、A14、A15,为离群值

Note: deviation points 4, 9 and 10 of reference points in the 4-point system correspond to sampling points A9, A14 and A15 respectively, and are outliers

体的组成和无机生活环境的状态等,将对整个流域的健康和稳定有积极的作用。

4 结论

(1)2013—2014年,在雅鲁藏布江流域干支流共 观察到周丛藻类7门10纲23目34科70属(种),硅藻门 (35.71%)、绿藻门(32.86%)和蓝藻门(20.00%)为前 3个优势门类,优势种以硅藻门周丛藻类为主,该水 域属硅藻-绿藻-蓝藻型水体。(2)整个调查区域中, 雅鲁藏布江流域干流周丛藻类的物种丰富度(SR) 和总丰度(TA)均稍低于支流;Shannon-Wiener多样 性指数的变幅为4.84—9.41,Pielou均匀度指数的 变幅为2.41—4.80,则调查水域整体为轻污型-清洁 型水体。(3)雅鲁藏布江流域周丛藻类的生物多样 性特征与P-IBI评价体系共同说明:雅鲁藏布江流域 干流上下游及其4大支流水生态系统的健康状态优 于雅鲁藏布江流域干流中游的健康状态。

参考文献:

- Wang L, Cong Y T, Lu Y N, *et al.* Benthic algal communities of Taizi River and its main tributaies in relation to environmental variables [J]. *Journal of Aquaculture*, 2018, **39**(7): 6-10. [王丽, 丛玉婷, 卢亚楠, 等. 太子河流 域及其主要支流底栖藻类群落与环境因子的关系 [J]. 水产养殖, 2018, **39**(7): 6-10.]
- [2] Song Y Z, Zhang Y D, Zheng J W, et al. Periphytic algae ecology in freshwater lake: A review [J]. Chinese Journal of Ecology, 2016, 35(2): 534-541. [宋玉芝, 张亚冬, 郑建伟, 等. 淡水湖泊附着藻类生态学研究进展 [J]. 生 态学杂志, 2016, 35(2): 534-541.]
- [3] Liu J K. Advanced Aquatic Biology [M]. Beijing: Science Press, 1999: 261-262. [刘建康. 高级水生生物学 [M]. 北京: 科学出版社, 1999: 261-262.]
- [4] Ma M Y, Cui L J, Zhang M Y, *et al.* Primary production of periphyton and their relationship to water quality in

Baiyangdian Lake [J]. *Acta Ecologica Sinica*, 2018, **38**(2): 443-456. [马牧源, 崔丽娟, 张曼胤, 等. 白洋淀附 着藻类的初级生产力及其与水质的关系 [J]. 生态学报, 2018, **38**(2): 443-456.]

- [5] Ding N, Xu D P, Liu K, et al. Characteristics of periphytic algae communities in Wuli Lake, Lake Taihu [J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(2): 346-352. [丁娜, 徐东坡, 刘凯, 等. 太湖五里湖着生藻类群落 结构特征分析 [J]. 江西农业大学学报, 2015, 37(2): 346-352.]
- [6] Chen C J, Han Z Y, Zhu Y M, et al. Periphyton and its application in water purification [J]. Chinese Journal of Applied Ecology, 2009, 20(11): 2820-2826. [陈重军, 韩 志英, 朱荫湄 等. 周丛藻类及其在水质净化中的应用 [J]. 应用生态学报, 2009, 20(11): 2820-2826.]
- [7] Li Z, Huo T B, Wu S, et al. Assessment of river ecosystem health in harbin section of Songhua River during ice-free period based on periphyton [J]. Chinese Journal of Fisheries, 2019, 32(5): 47-54. [李喆, 霍堂斌, 吴松, 等. 基于着生藻类的松花江哈尔滨段明水期三季健康评价 [J]. 水产学杂志, 2019, 32(5): 47-54.]
- [8] Liu Y Y, Ayi Q L, Zhang S R, *et al.* Comparative study on the suitability of periphytic algae and phytoplankton in river health assessment [J]. *Acta Ecologica Sinica*, 2020, 40(11): 3833-3843. [刘园园, 阿依巧丽, 张森瑞, 等. 着 生藻类和浮游藻类在三峡库区河流健康评价中的适宜 性比较研究 [J]. 生态学报, 2020, 40(11): 3833-3843.]
- [9] Wen H, Cai J L, Su Y, et al. Characteristics of periphytic algal community and its relationship with aquatic environmental factors in streams of Lake Dianchi watershed in wet season [J]. Journal of Lake Sciences, 2011, 23(1): 40-48. [文航, 蔡佳亮, 苏玉, 等. 滇池流域入湖河流丰水 期着生藻类群落特征及其与水环境因子的关系 [J]. 湖 泊科学, 2011, 23(1): 40-48.]
- [10] Hu Z Y, Cai Q H. Preliminary report on aquatic ecosystem dynamics of the Three Gorges Reservoir before and after impoundment [J]. *Acta Hydrobiologica Sinica*, 2006, **30**(1): 1-6. [胡征宇, 蔡庆华. 三峡水库蓄水前后水生态系统动态的初步研究 [J]. 水生生物学报, 2006, **30**(1): 1-

6.]

- [11] Keulegan G H. Laws of turbulent flow in open channels
 [J]. Journal of Research of the National Bureau of Standards, 1938: 21.
- [12] Cai L, Zhang P, Hou Y Q, et al. Demand, achievement and issues of fish passage facilities [J]. Chinese Journal of Ecology, 2020, 39(1): 292-299. [蔡露, 张鹏, 侯轶群, 等. 我国过鱼设施建设需求、成果及存在的问题 [J]. 生 态学杂志, 2020, 39(1): 292-299.]
- [13] Zhao Z H, Ruan X H, Xing Y N, *et al.* Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city
 [J]. *Environmental Science*, 2009, **30**(12): 3579-3584. [赵振华, 阮晓红, 邢雅囡, 等. 城市重污染河道水质及底栖 附泥藻类生态特征 [J]. 环境科学, 2009, **30**(12): 3579-3584.]
- [14] Hu C H, Zhang Z H. Research on variation of floodwater stage during the atrophy process of the lower Yellow River channel [J]. *Journal of Hydraulic Engineering*, 2012, 43(8): 883-890. [胡春宏, 张治昊. 黄河下游河道 萎缩过程中洪水水位变化研究 [J]. 水利学报, 2012, 43(8): 883-890.]
- [15] Mei Y G, Wang S J. Variation of channel lateral erosion/accretion and channel shrinkage rate in the Linhe Reach of the Yellow River since 1977 [J]. Acta Geographica Sinica, 2016, 71(9): 1509-1519. [梅艳国, 王随 继. 1977年以来黄河临河段河岸冲淤变化及河道萎缩 速率 [J]. 地理学报, 2016, 71(9): 1509-1519.]
- [16] Chen Y N, Li W H, Chen Y P, et al. Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River [J]. Acta Ecologica Sinica, 2007, 27(2): 538-545. [陈亚宁,李卫红,陈亚鹏,等. 新疆塔里 木河下游断流河道输水与生态恢复 [J]. 生态学报, 2007, 27(2): 538-545.]
- [17] Liu Y Q, Liu J Z, Chen Y J, et al. Environmental characteristics and interspecific associations in the lower reaches of the Kongque River [J]. Acta Ecologica Sinica, 2017, 37(8): 2706-2718. [刘亚琦, 刘加珍, 陈永金, 等. 孔雀河下游断流河道的环境特征及物种间关系 [J]. 生态学报, 2017, 37(8): 2706-2718.]
- [18] Duan X H. Ecological impacts of water and sediment transportation on macroinvertebrate community in rivers
 [D]. Beijing: Tsinghua University, 2009: 1-20. [段学花. 河流水沙对底栖动物的生态影响研究 [D]. 北京: 清华 大学, 2009: 1-20.]
- [19] Zhang Y, Xu C B, Ma X P, et al. Biotic integrity index and criteria of benthic organizms in Liao River Basin [J]. Acta Scientiae Circumstantiae, 2007, 27(6): 919-927. [张 远, 徐成斌, 马溪平, 等. 辽河流域河流底栖动物完整性 评价指标与标准 [J]. 环境科学学报, 2007, 27(6): 919-927.]
- [20] Yin X W, Qu X D, Li Q N, *et al.* Using periphyton assemblages to assess stream conditions of Taizi River

Basin [J]. Acta Ecologica Sinica, 2012, **32**(6): 1677-1691. [殷旭旺, 渠晓东, 李庆南, 等. 基于着生藻类的太子河流 域水生态系统健康评价 [J]. 生态学报, 2012, **32**(6): 1677-1691.]

- [21] Zhang R, Xu Z X, Liu X W, et al. Spatiotemporal Characteristics of Land Use/Cover Change for the Yarlung Tsangpo River Basin from 1980 to 2015 [J]. China Rural Water and Hydropower, 2019(3): 106-111. [张瑞, 徐宗 学, 刘晓婉, 等. 1980—2015年雅鲁藏布江流域土地利用时空演变格局分析 [J]. 中国农村水利水电, 2019(3): 106-111.]
- [22] Wang S, Wang S S, Fan F L. Change patterns of NDVI (1985—2018) in the Yarlung Zangbo River Basin of China based on time series segmentation algorithm [J]. *Acta Ecologica Sinica*, 2020, 40(19): 6863-6871. [王塞, 王思诗, 樊风雷. 基于时间序列分割算法的雅鲁藏布江 流域NDV1(1985—2018) 变化模式研究 [J]. 生态学报, 2020, 40(19): 6863-6871.]
- [23] Liu H, Li X Y, Yao Z Y. Rainfall erosivity in Yarlung Zangbo River Basin during 1961—2015 [J]. Journal of Desert Research, 2019, **39**(2): 166-176. [刘慧, 李晓英, 姚正毅. 1961—2015年雅鲁藏布江流域降雨侵蚀力 [J]. 中国沙漠, 2019, **39**(2): 166-176.]
- [24] Liu H, Li X Y, Xiao J H, et al. Variations of Wind Erosion Climatic Erosivity in the Yarlung Zangbo River Basin During 1961—2015 [J]. Scientia Geographica Sinica, 2019, 39(4): 688-695. [刘慧, 李晓英, 肖建华, 等. 1961—2015年雅鲁藏布江流域风蚀气候侵蚀力变化 [J]. 地理科学, 2019, 39(4): 688-695.]
- [25] Yang Y J, Xu S, Liu R, et al. Using epilithic algae assemblages to assess stream heath of the Ruxi River [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 10. [杨燕君, 徐沙, 刘瑞, 等. 基于附石藻类生物完整性指数对汝溪河水生态系统健康的评价 [J]. 水生生物学报, 2017, 41(1): 10.]
- [26] Hu H J, Wei Y X. China's Freshwater Algae System, Classification and Ecology [M]. Beijing: Science Press, 2006: 23-900. [胡鸿钧, 魏印心. 中国淡水藻类系统、分 类及生态 [M]. 北京: 科学出版社, 2006: 23-900.]
- [27] Zhu H Z, Chen J Y. Diatoms from Tibet, China [M].
 Beijing: Science Press, 2000: 1-353. [朱蕙忠, 陈嘉佑. 中 国西藏硅藻 [M]. 北京: 科学出版社, 2000: 1-353.]
- [28] Yin X W, Xu Z X, Yan N, et al. Community structure and biological integrity of periphyton in the Weihe River Basin [J]. Acta Scientiae Cricumstantiae, 2013, 33(2): 518-527. [殷旭旺, 徐宗学, 鄢娜, 等. 渭河流域河流着生 藻类的群落结构与生物完整性研究 [J]. 环境科学学报, 2013, 33(2): 518-527.]
- [29] Wang B X. Water quality bioassessment using benthic macroinvertebrates [D]. Nanjing: Nanjing Agricultural University, 2003: 74-99. [王备新. 大型底栖无脊椎动物 水质生物评价研究 [D]. 南京: 南京农业大学, 2003: 74-99.]

- [30] Barbour M T, Gerritsen J, Griffith G E, et al. A framework for biological criteria for Florida streams using benthic macroinvertebrates [J]. Journal of the North American Benthological Society, 1996, 15(2): 185-211.
- [31] Liu H P, Ye S W, Yang X F, et al. Spatio-emporal dynamics of aquatic organism community and their relationships to environment in Niyang River Tibet: 2. periphytic algae [J]. Journal of Lake Sciences, 2013, 25(6): 907-915.
 [刘海平, 叶少文, 杨雪峰, 等. 西藏尼洋河水生生物群落时空动态及与环境因子关系: 2. 着生藻类 [J]. 湖泊科学, 2013, 25(6): 907-915.]
- [32] Shannon C E, Weaver W. The Mathematical Theory of Communication [M]. London: University of Illinois Press, 1949: 125.
- [33] Pielou E C. The measurement of diversity in different types of biological collections [J]. *Journal of Theoretical Biology*, 1966(13): 131-144.
- [34] Xue H, Zheng B H, Meng F S, et al. Community structures of periphyton and their relationship with aquatic environmental factors in the Gan River, China [J]. Ecology and Environmental Sciences, 2020, 29(2): 328-336. [薛浩, 郑丙辉, 孟凡生, 等. 甘河着生藻类群落结构及其与环境因子的关系 [J]. 生态环境学报, 2020, 29(2): 328-336.]
- [35] Ma B S, Xie C X, Yang X F, et al. A preliminary study on periphyton and zoobenthos in the Xaitongmoin reach of the Yarlung Zangbo River [J]. Resources and Environment in the Yangtze Basin, 2012, 21(8): 942-950. [马宝 珊,谢从新,杨学峰,等. 雅鲁藏布江谢通门江段着生生 物和底栖动物资源初步研究 [J]. 长江流域资源与环境, 2012, 21(8): 942-950.]
- [36] Liang X. Effect of periphyton on water environment and its application in water quality treatment [D]. Shanghai: East China Normal University, 2007: 1-68. [梁霞. 周丛藻 类环境响应与水质处理应用研究 [D]. 上海: 华东师范 大学, 2007: 1-68.]
- [37] Zhou D F. Raman Spectroscopy Analysis of UV Radiation Damage to DNA and Its Protection [D]. Nanjing: Nanjing Normal University, 2005: 9. [周殿凤. 紫外辐射 对DNA的损伤及其防护的拉曼光谱分析 [D]. 南京: 南 京师范大学, 2005: 9.]
- [38] Zhao M X, Lei L M, Han B P. Seasonal change in phytoplankton communities in Tangxi Reservoir and the effecting factors [J]. Journal of Tropical and Subtropical Botany, 2005, 13(5): 386-392. [赵孟绪, 雷腊梅, 韩博平. 亚 热带水库浮游植物群落季节变化及其影响因素分析—— 以汤溪水库为例 [J]. 热带亚热带植物学报, 2005, 13(5): 386-392.]
- [39] Wu N C, Tang T, Li D F, et al. Benthic algal communities in Jinping reach of Yalong River and its main tributaries in relation to environmental variables [J]. Acta Ecologica Sinica, 2009, 29(4): 1697-1703. [吴乃成, 唐涛, 黎道 丰,等. 雅砻江(锦屏段)及其主要支流底栖藻类群落与

环境因子的关系 [J]. 生态学报, 2009, 29(4): 1697-1703.]

- [40] Jun S, Wang D B, Zhou J H, et al. Community structures of phytoplankton and its relationship with environmental factors in the Lhasa River [J]. Acta Ecologica Sinica, 2019, **39**(3): 787-798. [君珊, 王东波, 周健华, 等. 拉萨 河流域浮游植物群落结构特征及与环境因子的关系 [J]. 生态学报, 2019, **39**(3): 787-798.]
- [41] Zhang H F, Chen Y N, Chen Y P, et al. Species quantity change and ecosystem dynamics in the lower reaches of Tarim River [J]. Chinese Journal of Ecology, 2004, 23(4): 21-24. [张宏锋, 陈亚宁, 陈亚鹏, 等. 塔里木河下游植物 群落的物种数量变化与生态系统动态研究 [J]. 生态学 杂志, 2004, 23(4): 21-24.]
- [42] Sun Z Q, Shi X L, Xu L L, et al. The protozoan community structure and its response to the change of water quality in a typical wetland landscape in summer [J]. Acta Hydrobiologica Sinica, 2013, 37(2): 290-299. [孙志强, 施心路, 徐琳琳, 等. 景观湿地夏季原生动物群落结构 与水质关系 [J]. 水生生物学报, 2013, 37(2): 290-299.]
- [43] Tian Y Q, Yu C C, Wang L, et al. Dynamic changes of phytoplankton's community structure in Beixi of Jiulongjiang River Fujian Province of East China and related affecting factors [J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2559-2565. [田永强, 俞超超, 王磊, 等. 福 建九龙江北溪浮游植物群落分布特征及其影响因子 [J]. 应用生态学报, 2012, 23(9): 2559-2565.]
- [44] Li K Z, Yin J Q, Huang L M, et al. Dynamic variations of community structure and quantity of zooplankton in Zhujiang river estuary [J]. Journal of Tropical Oceanography, 2005(5): 60-68. [李开枝, 尹健强, 黄良民, 等. 珠 江口浮游动物的群落动态及数量变化 [J]. 热带海洋学 报, 2005(5): 60-68.]
- [45] Wang X H, Ji B C, Li M D, et al. Phytoplankton and bioassessment of water quality in upper waters of Yinluan Project [J]. Research of Environmental Sciences, 2004, 17(4): 18-24. [王新华, 纪炳纯, 李明德, 等. 引滦工程上 游浮游植物及其水质评价 [J]. 环境科学研究, 2004, 17(4): 18-24.]
- [46] Yin X W, Zhang Y, Qu X D, et al. Community structure and biological integrity of periphyton in Hunhe River water system of Liaoning Province [J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2732-2740. [殷旭旺, 张 远, 渠晓东等. 浑河水系着生藻类的群落结构与生物完 整性 [J]. 应用生态学报, 2011, 22(10): 2732-2740.]
- [47] Zhu Y X, Mi W J, Li B, *et al.* The influences of two hydraulic structures on periphytic algal Communities in the middle channel of the South-to-North Water Diversion Project [J]. *Acta Hydrobiologica Sinica*, 2021, **45**(4): 9. [朱字轩, 米武娟, 李波, 等. 南水北调中线干渠两个水工 构筑物对着生藻类群落的影响 [J]. 水生生物学报, 2021, **45**(4): 9.]
- [48] Tan X, Zhang Q F. A review of diatoms in biomonitoring

and ecosystem health assessment [J]. Acta Hydrobiologica Sinica, 2018, **42**(1): 9. [谭香, 张全发. 底栖硅藻应 用于河流生态系统健康评价的研究进展 [J]. 水生生物 学报, 2018, **42**(1): 9.]

USING PERIPHYTON ALGAE TO ASSESS STREAM CONDITIONS OF YARLUNG ZANGBO RIVER BASIN

WANG Xian-Xian^{1,2}, LIU Le-Le³, YANG Xue-Fen¹, YANG Rui-Bin¹ and LIU Hai-Ping²

(1. College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; 2. Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; 3. Tibet Animal Epidemic Disease Prevention and Control Center, Lhasa 850000, China)

Abstract: Periphyton algae are one of the main groups of organisms in the aquatic ecosystem. They are self-sustaining and can store solar energy by converting it into chemical energy through photosynthesis, as well as generate and release oxygen to promote the material circulation, energy flow and information transfer of the aquatic ecosystem. Periphyton algae are rich in species, attached growth, short life cycle, sensitive to changes in the water environment, and can absorb pollutants in water bodies and purify water quality. They are the beginning of the food chain in the water ecosystem and an important indicator species for water quality monitoring, and often used to the health evaluation of aquatic ecosystems. The Yarlung Zangbo River Basin has high average altitude, low water temperature, and strong ultraviolet radiation, which is the most important natural aquatic ecosystem in Tibet Autonomous Region. It can adjust the climate characteristics of Tibet Autonomous Region and has special geomorphological and ecological conditions that many low altitude rivers do not have, the ecological environment is very sensitive and fragile, and it is highly susceptible to events such as global climate change and human disturbance. Ensuring its water environment has a high health status is an important foundation for protecting green mountains and rivers. In order to assess the health status of the water ecosystem, 26 sampling points were set up on the main stream and four major tributaries of the Yarlung Zangbo River Basin from 2013 to 2014. The environmental data and the periphyton algae community were collected. and the periphytic index of biological integrity (P-IBI) were constructed. A total of 7 phyla, 10 classes, 23 orders, 34 families and 70 genera (species) of periphyton were identified, most of which were Bacillariophyta (35.71%), Chlorophyta (32.86%) and Cyanophyta (20.00%), and the dominant species of periphyton algae were the Bacillariophyta belonging to Bacillariophyta-chlorophyta-cyanophyta type of water. The species richness and total abundance of periphyton algae in the mainstream were slightly lower than those of the tributaries of the Yarlung Zangbo River Basin. The Shannon-Wiener diversity index varied from 4.84 to 9.41, and the Pielou evenness index varied from 2.41 to 4.80, indicating that the investigated water area was light pollution-clean water. The biodiversity characteristics and the P-IBI evaluation system of periphyton algae in the Yarlung Zangbo River Basin indicated that the water ecosystems in the upper, lower reaches of the main stream and four major tributaries were better than those in the middle reaches of the main stream of the Yarlung Zangbo River Basin. These results provide a basis for studying feeding habits and mechanisms of Tibet indigenous fishes to ensure the safety of water ecology and to realize the sustainable development of resources and environmental protection.

Key words: Yarlung Zangbo River Basin; Periphyton algae; P-IBI; Aquatic ecosystem; Health evaluation