CO2对转基因聚球藻7942生长、表达等的影响

朱笃, 李元广, 叶勤, 魏晓东, 章军

朱笃, 李元广, 叶勤, 魏晓东, 章军. CO2对转基因聚球藻7942生长、表达等的影响[J]. 水生生物学报, 2004, 28(4): 361-366.
引用本文: 朱笃, 李元广, 叶勤, 魏晓东, 章军. CO2对转基因聚球藻7942生长、表达等的影响[J]. 水生生物学报, 2004, 28(4): 361-366.
ZHU DU, LI Yuan-Guang, YE Qin, WEI Xiao-Dong, ZHANG Jun. EFFECT OF CO2 CONCENTRATIONS ON GROWTH, THYMOSIN α1 EXPRESSION AND PHOTOSYNTHESIS OF TRANSGENIC SYNECHOCOCCUS SP.PCC7942[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(4): 361-366.
Citation: ZHU DU, LI Yuan-Guang, YE Qin, WEI Xiao-Dong, ZHANG Jun. EFFECT OF CO2 CONCENTRATIONS ON GROWTH, THYMOSIN α1 EXPRESSION AND PHOTOSYNTHESIS OF TRANSGENIC SYNECHOCOCCUS SP.PCC7942[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(4): 361-366.

CO2对转基因聚球藻7942生长、表达等的影响

基金项目: 

国家海洋863基金项目(819-Q01)

上海市科技启明星计划项目及上海市重点学科部分资助

EFFECT OF CO2 CONCENTRATIONS ON GROWTH, THYMOSIN α1 EXPRESSION AND PHOTOSYNTHESIS OF TRANSGENIC SYNECHOCOCCUS SP.PCC7942

  • 摘要: 研究了不同浓度CO2对转基因聚球藻7942生长、胸腺素α1表达和光合作用的影响,结果表明:不同浓度的CO2对藻细胞指数生长期的比生长速率没有明显的影响,通入空气与5%CO2空气对藻细胞线性生长速率和最终藻细胞浓度影响也不显著;高浓度CO2会减少NO3-的吸收,提高硝酸还原酶的活性,这表明NO3-的吸收与还原是不偶联的.低浓度CO2对藻细胞的生化组成和胸腺素α1表达没有影响.而高浓度的CO2明显降低可溶性蛋白及光合色素叶绿素a、类胡萝卜素和藻蓝蛋白的含量,胸腺素α1含量也显著降低.不同CO2浓度培养的藻细胞P-I曲线表明,不同浓度的CO2对藻细胞的光合作用效率没有明显的影响,但生长在高浓度CO2中藻细胞的最大光合速率明显增加.
    Abstract: In recent years, genetic engineering of cyanobacterium has been developed to produce important chemicals, especially pharmaceuticals. The unicellular cyanobacterium Synechococcus sp.PCC7942 is an obligate photoautotrophic blue-green alga and a transformable strain that can be used as an effective host in genetic manipulation. There have been numerous studies on the expression of exogenous proteins in Synechococcus sp.PCC7942. In order to explore the possibility of protein pharmaceutical production with transgenic microalgae,Zhang et al cloned the human thymosin α1 gene that was expressed as a fusion protein with ubiquitin in Synechococcus sp.PCC7942. High cell-density culture of transgenic Synechococcus sp.PCC7942 with high expression level is very critical to its application, but few papers have been published on this aspect.In this paper, the transgenic Synechococcus sp.PCC7942 was batch-cultured in 1.5 L air-lift photobioreactors, and effects of CO2 concentrations on the growth, thymosin α1 expression and photosynthesis of the transgenic Synechococcus sp.PCC7942 were investigated. The specific growth rate of the alga cells during exponential growth phase was not significantly affected by CO2 concentrations; biomass and linear growth rate of transgenic Synechococcus sp.PCC7942 under normal CO2 and high CO2 concentrations were only slight difference.High CO2 level reduced NO3- assimilation and increased nitrate reductase activity, which indicated that reduction and assimilation of nitrate were uncoupled. Low CO2 level did not affect cell biochemical composition and thymosin α1 expression; however,the contents of soluble protein, chlorophyll a, carotenoids and phycocyarin of the transgenic alga cells grown under high CO2 level were significantly diminished, the thymosin α1 content was also markedly reduced at high CO2 level. On the basis of P-I curves, no difference was observed in photosynthetic efficiency; however, maximum photosynthetic rate was markedly improved by high CO2 level.
  • [1] Lou S,Zhang J,Wu Q, et al.Construction and application of the gene expressing vector for cyanobacterium [J].Journal of Xiamen University, 2001, 40(2):586-591.[楼士林,章军,吴巧娟,等.蓝藻基因表达载体系统的构建和应用[J],厦门大学学报,2001,40(2):586-591][2] Hu Q, Guterman H, Richmond A.Physiological characteristics of Spirulina plantensis (cyanobacteria) cultured at ultrahigh cell densities [J].Journal of Phycology, 1996,32:1066-1073[3] Nobutaka H, Toshifumi T, Yoshiharu F, et al.Tolerance of microalgae to high CO2 and high temperature[J].phytochemistry.1992, 31(10):3345-3348[4] Lin H.Comparison of Spirulina subsalsa with other Spirulina species [J].Acta Hydrobiologica Sinica, 1991,15(1):27-34.[林惠民.盐泽螺旋藻与其他螺旋藻的比较研究[J].水生生物学报,1991,15(1):27-34][5] Mercado J M, Niell F X, Figueroa Fl.Regulation of the mechanism for HCO-3 use by the inorganic carbon concentration in Porphyra leucosticta Thur.[J].Planta,1997,201:319-325[6] Eley J H.Effect of CO2 concentration on the pigmentation in the blue-green alga Anacystis nidulans [J].Plant Cell Physiology,1971,12:311-316[7] Garcia-Sánchez M J, Fernández J A, Niell F X.Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata [J].Planta 1994,194:55-61[8] Mecardo J M, Javier F,Gordillo L, et al.Effects of different levels of CO2 on photosynthesis and cell components of the red alga Por- phyra leucosticta [J].Journal of Applied Phycology, 1999,11:455-461[9] Gordillo FJL, Jiménez C.Figueroa F L, Xavier Niell F.Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira)[J].Journal of Applied Phycology, 1999,10:461-469[10] Xia J, Gao K.Effects of high CO2 concentration on growth and photosynthesis of Spirulina maxima [J].Acta Hydrobiologica Sinica, 2001,25(5):471-480.[夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响[J].水生生物学报,2001,25(5):474-480][11] Zhang J,Song X, Xu H, et al.Expression thymosin α1 in Synechococcus sp.PCC7942 by homology integration donor plasmid pUTK [J].Marine Science,2001,25(6):1-3,34.[章军,宋新强,徐虹,等.利用同源重组质粒pUTK转化蓝藻 Synechococcus sp.PCC7942 及胸腺素α1的表达[J].海洋科学,2001,25(6):1-3,34][12] Marquez FJ,Sasaki K,Kakizono T,Nishio N,Nagai S.Growth characteristics of Spirulina Platensis in mixotrophic and heterotrophic conditions [J].Journal of Fermentation and Bioengineering,1993,76(5):408-410[13] Xu X.Experiment and guidance of biochemistry [M].Beijing:Chinese press of medicine science and technology, 1994,34-36.[徐秀兰.生物化学实验与指导[M].北京:中国医药科技出版社,1994,34-36.][14] Hellebust J A, Graigie J S (eds).Handbook of phycological Methods:Physiological biochemical Methods [M].London: Cambridge University Press, 1998,73-75[15] Zou Q.Experimemt of plant physiology and biochemistry [M].Beijing:Chinese agriculture press.1995,27-29.[邹琦.植物生理生化实验.北京:中国农业出版社,1995,27-29][16] Hecht U, Mohr H.Factors controlling nitrate and ammonium accumulation in mustard (Sinapis alba) seedlings [J].Physiologia plantarum,1990,78:379-387[17] Zhu D, Chen T, Li Y, et al.Establishment and application of indirect ELISA method for thymosin α1 expressed in the transgenic synochococcus sp.PCC7942[J].Marine Science,2002,26(12):1-5.[朱笃,陈天圣,李元广,等.胸腺素α1间接ELISA法建立及其在转基因蓝藻中的应用[J].海洋科学,2002,26(12):1-5][18] Melis A, Neidhardt J,Benemann J R Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells [J].Journal of Applied phycology,1999,10:515-525[19] Hobson P,Fallowfield H.Effect of salinity on photosynthetic activity of Nodularia spumigena [J].Journal of Applied phycology,2001,13:493-499[20] Yamada H, Ohkuni N,Kajiwara, S, Ohtaguchi K.CO2-removal characteristics of Anacystis nidulans R2 in airlift bioreactors [J].Energy,1997,22(2/3):349-352[21] Rodriguez R, Kobayashi M, Omata T, Lara C.Independence of carbon and nitrogen control in the posttranslational regulation of nitrate transport in the cyanobacterium Synechococcus sp.Strain PCC7942[J].FEBS Letters,1998,432:207-212[22] Nakajima Y,Ueda R.Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments [J].Journal of Applied Phycology,1997,9:503-510

    Lou S,Zhang J,Wu Q, et al.Construction and application of the gene expressing vector for cyanobacterium [J].Journal of Xiamen University, 2001, 40(2):586-591.[楼士林,章军,吴巧娟,等.蓝藻基因表达载体系统的构建和应用[J],厦门大学学报,2001,40(2):586-591][2] Hu Q, Guterman H, Richmond A.Physiological characteristics of Spirulina plantensis (cyanobacteria) cultured at ultrahigh cell densities [J].Journal of Phycology, 1996,32:1066-1073[3] Nobutaka H, Toshifumi T, Yoshiharu F, et al.Tolerance of microalgae to high CO2 and high temperature[J].phytochemistry.1992, 31(10):3345-3348[4] Lin H.Comparison of Spirulina subsalsa with other Spirulina species [J].Acta Hydrobiologica Sinica, 1991,15(1):27-34.[林惠民.盐泽螺旋藻与其他螺旋藻的比较研究[J].水生生物学报,1991,15(1):27-34][5] Mercado J M, Niell F X, Figueroa Fl.Regulation of the mechanism for HCO-3 use by the inorganic carbon concentration in Porphyra leucosticta Thur.[J].Planta,1997,201:319-325[6] Eley J H.Effect of CO2 concentration on the pigmentation in the blue-green alga Anacystis nidulans [J].Plant Cell Physiology,1971,12:311-316[7] Garcia-Sánchez M J, Fernández J A, Niell F X.Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata [J].Planta 1994,194:55-61[8] Mecardo J M, Javier F,Gordillo L, et al.Effects of different levels of CO2 on photosynthesis and cell components of the red alga Por- phyra leucosticta [J].Journal of Applied Phycology, 1999,11:455-461[9] Gordillo FJL, Jiménez C.Figueroa F L, Xavier Niell F.Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira)[J].Journal of Applied Phycology, 1999,10:461-469[10] Xia J, Gao K.Effects of high CO2 concentration on growth and photosynthesis of Spirulina maxima [J].Acta Hydrobiologica Sinica, 2001,25(5):471-480.[夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响[J].水生生物学报,2001,25(5):474-480][11] Zhang J,Song X, Xu H, et al.Expression thymosin α1 in Synechococcus sp.PCC7942 by homology integration donor plasmid pUTK [J].Marine Science,2001,25(6):1-3,34.[章军,宋新强,徐虹,等.利用同源重组质粒pUTK转化蓝藻 Synechococcus sp.PCC7942 及胸腺素α1的表达[J].海洋科学,2001,25(6):1-3,34][12] Marquez FJ,Sasaki K,Kakizono T,Nishio N,Nagai S.Growth characteristics of Spirulina Platensis in mixotrophic and heterotrophic conditions [J].Journal of Fermentation and Bioengineering,1993,76(5):408-410[13] Xu X.Experiment and guidance of biochemistry [M].Beijing:Chinese press of medicine science and technology, 1994,34-36.[徐秀兰.生物化学实验与指导[M].北京:中国医药科技出版社,1994,34-36.][14] Hellebust J A, Graigie J S (eds).Handbook of phycological Methods:Physiological biochemical Methods [M].London: Cambridge University Press, 1998,73-75[15] Zou Q.Experimemt of plant physiology and biochemistry [M].Beijing:Chinese agriculture press.1995,27-29.[邹琦.植物生理生化实验.北京:中国农业出版社,1995,27-29][16] Hecht U, Mohr H.Factors controlling nitrate and ammonium accumulation in mustard (Sinapis alba) seedlings [J].Physiologia plantarum,1990,78:379-387[17] Zhu D, Chen T, Li Y, et al.Establishment and application of indirect ELISA method for thymosin α1 expressed in the transgenic synochococcus sp.PCC7942[J].Marine Science,2002,26(12):1-5.[朱笃,陈天圣,李元广,等.胸腺素α1间接ELISA法建立及其在转基因蓝藻中的应用[J].海洋科学,2002,26(12):1-5][18] Melis A, Neidhardt J,Benemann J R Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells [J].Journal of Applied phycology,1999,10:515-525[19] Hobson P,Fallowfield H.Effect of salinity on photosynthetic activity of Nodularia spumigena [J].Journal of Applied phycology,2001,13:493-499[20] Yamada H, Ohkuni N,Kajiwara, S, Ohtaguchi K.CO2-removal characteristics of Anacystis nidulans R2 in airlift bioreactors [J].Energy,1997,22(2/3):349-352[21] Rodriguez R, Kobayashi M, Omata T, Lara C.Independence of carbon and nitrogen control in the posttranslational regulation of nitrate transport in the cyanobacterium Synechococcus sp.Strain PCC7942[J].FEBS Letters,1998,432:207-212[22] Nakajima Y,Ueda R.Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments [J].Journal of Applied Phycology,1997,9:503-510

计量
  • 文章访问数:  958
  • HTML全文浏览量:  0
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-12-15
  • 修回日期:  2003-10-29
  • 发布日期:  2004-07-24

目录

    /

    返回文章
    返回