放养密度对IPRA养殖太湖鲂鲌生长、抗氧化酶及肠道微生物群落的影响

STOCKING DENSITIES ON GROWTH, ANTIOXIDANT ENZYME ACTIVITIES AND INTESTINAL MICROBIOTA OF HYBRID OF CULTER ALBURNUS (♀)×MEGALOBRAMA TERMINALIS (♂) IN IPRA SYSTEM

  • 摘要: 为探讨池塘内循环流水养殖(In-pond Raceway Aquaculture, IPRA)太湖鲂鲌幼鱼的合理放养密度, 以初始体重为(5.58±0.45) g的太湖鲂鲌幼鱼为研究对象, 设置3个放养密度: 0.5 (SD1)、1.0 (SD2)、1.5 kg/m3 (SD3), 在养殖第90、第120、第150、第180天采样, 对其生长性能、血清和肝脏抗氧化酶活力进行分析, 实验结束后分析肠道微生物群落组成。生长结果表明: 养殖120d, 当放养密度超过1.0 kg/m3时, 太湖鲂鲌幼鱼的体重和特定生长率(SGR)显著降低(P<0.05), 养殖150—180d, 体重和SGR随着放养密度的升高显著降低(P<0.05)。血清抗氧化酶结果表明: 养殖90d, 太湖鲂鲌血清抗氧化酶的活力随着放养密度的升高而增加, SD3组显著高于SD1组(P<0.05)。养殖150—180d, 血清抗氧化酶的活力随着放养密度的升高而降低, 养殖180d, SD3组抗氧化酶的活力显著低于SD1组(P<0.05)。肝脏抗氧化酶结果表明: 养殖150—180d, 肝脏中抗氧化酶活力随着放养密度的增加而升高, GSH-Px的活力随着放养密度的增加显著升高(P<0.05)。养殖前120d, 丙二醛(MDA)的水平随着放养密度的升高有所降低, 养殖180d, SD2和SD3组的MDA水平显著高于SD1组(P<0.05)。肠道微生物结果表明, 在属水平, 各密度组肠道微生物群落组成发生明显改变, 气单胞菌属(Aeromonas)、假单胞菌属(Pseudomonas)和不动杆菌属(Acinetobacter)等在SD3组的相对丰度显著增加(P<0.05), 而Shannon多样性指数显著降低(P<0.05)。综上, 在试验条件下, 当养殖时间小于120d, 放养密度小于1.0 kg/m3时, 太湖鲂鲌幼鱼的生长和抗氧化能力未受显著影响, 建议放养密度小于1.0 kg/m3; 当养殖时间为150—180d, 放养密度大于0.5 kg/m3时, 放养密度对太湖鲂鲌幼鱼的生长产生了抑制, 肠道微生物群落组成中条件致病菌显著增加、多样性指数显著降低, 建议放养密度小于0.5 kg/m3

     

    Abstract: This experiment was conducted to evaluate the appropriate stocking density of a new hybrid strain of (♀Culter alburnus) × (♂Megalobrama terminalis) initial body weight of (5.58±0.45) g for in-pond raceway aquaculture (IPRA) system. The new hybrid strains were farmed in three stocking densities of 0.5 (SD1), 1.0 (SD2) and 1.5 kg/m3 (SD3). The growth and antioxidant enzyme activities were analyzed on 90, 120, 150 and 180 days while the intestinal microbiota composition was analysed when the experiment finished. Growth results showed that the body weight and specific growth rate (SGR) decreased significantly when stocking density was above 1.0 kg/m3 on 120 days (P<0.05). In the day of 150—180, indices of SGR and body weight decreased significantly with the increasing of rearing density (P<0.05). Antioxidant enzyme activities in serum increased with the increasing of stocking density on 90 days, and fish farmed at SD3 had significantly higher antioxidant enzyme activities than group of SD1 (P<0.05). In contrast, antioxidant enzyme activities in serum decreased with the increasing of stocking density in the day of 150—180, and the activities of catalase (CAT) and total antioxidant capacity (T-AOC) were significant lower in the group of SD3 than group of SD1 (P<0.05). Antioxidant enzyme activities in liver increased with increasing stocking density in the day of 150—180, and values of GSH-Px decreased significantly with the increasing of stocking density (P<0.05). MDA level decreased with increasing stocking density before the day of 120, whereas fish farmed at SD2 and SD3 groups had significant higher MDA values than the SD1 group on 180 days. The intestinal microbiota results demonstrated that microbiota community changed in genus level obviously, and the relative abundances of pathogenic genus such as Aeromonas, Pseudomonas and Acinetobacter increased while Shannon diversity indices decreased significantly in group of SD3 (P<0.05). In conclusion, when culturing days below 120, the stocking density of SD2 had no great effect on the growth and antioxidant capacity, and the suitable stocking density is suggested below 1.0 kg/m3. When culturing time extends to 150 days, the stocking density of SD1 would inhibit growth and increase the relative abundances of pathogenic genus and decrease the Shannon diversity index of intestine microbiota, therefore 0.5 kg/m3 is suggested as an appropriate density.

     

/

返回文章
返回