THE COMMUNITY STRUCTURE OF PHYTOPLANKTON AND ITS RELATIONSHIPS WITH ENVIRONMENTAL FACTORS OF HEAVY METAL POLLUTION DISTRICTS IN AUTUMN
-
摘要: 为探究重金属污染区秋季浮游植物群落特征及其影响因子, 2019年11月对攸县和万山不同类型水体进行了采样调查, 共检出浮游植物7门52属67种, 结果显示不同类型水体间浮游植物群落结构差异不显著(R= –0.022, P=0.549), 攸县和万山浮游植物群落结构存在差异(R=0.152, P=0.083); 但均以绿藻、硅藻和蓝藻为主; 细胞密度变化范围为1.11×104—1.17×107 cells/L; 物种数分别为10—31种和6—18种, Shannon-Wiener 多样性指数分别为2.28—3.29和0.482—2.401, 均匀性指数分别为0.979—0.996和0.244—0.742, 两地的多样性指数存在显著差异(P<0.05)。Pearson相关性分析显示: 浮游植物细胞密度与CODMn、TOC、ORP呈显著正相关, 与Cr、Se、Ba、V呈显著负相关; Mantel test显示CODMn、WT、pH、TC、IC、
${\rm{PO}}_4^{3 - }$ -P及Co、Ni、Zn、Cd和Pb是影响浮游植物群落的关键因子; CCA分析显示常规理化因子对攸县和万山浮游植物群落的影响大于重金属。研究表明, 重金属污染区水体浮游植物群落结构存在显著的地域差异, 重金属离子含量及常规理化因子对群落结构特征均存在显著的影响。Abstract: To study the community structure of phytoplankton in different aquatic bodies polluted by heavy metals and its relationships with environmental factors, field surveys were conducted in Youxian County and Wanshan District in November 2019. A total of 67 phytoplankton species were identified, belonging to 7 phyla and 52 genera. The community structure of phytoplankton has no remarkable difference between different water types (R=–0.022, P=0.549), but the two study areas were different (R=0.152, P=0.083). The communities were dominated by Chlorophyta, Bacillariophyta, and Cyanophyta. The phytoplankton abundance ranged from 1.11×104 to 1.17×107. The species richness of the phytoplankton community was 10—31 in Youxian County and 6—18 in Wanshan District, the Shannon-Wiener index of the phytoplankton community was 2.28—3.29 in Youxian County and 0.482—2.401 in Wanshan District, the evenness index of the phytoplankton community was 0.979—0.996 in Youxian County and 0.244—0.742 in Wanshan District. These three indices showed significant differences in different districts (P<0.05). Pearson correlation analysis indicated that CODMn, TOC and ORP were significantly positively correlated with phytoplankton abundance, and Cr, Se, Ba and V were significantly negatively correlated with phytoplankton abundance. Mantel test analysis indicated that CODMn, WT, pH, TC, IC,${\rm{PO}}_4^{3 - }$ -P and Co, Ni, Zn, Cd, and Pb were the key factors that explain the phytoplankton community structure. The canonical correlation analysis indicated that the changes in the phytoplankton community were more related to routine physics and chemistry index than to heavy metals. There were significant differences in phytoplankton community structure in heavy metal polluted areas, and heavy metal ion content and routine physics and chemistry index had significant influences on the community structure. These results provide a research basis for isolating heavy metal tolerant algal strains and carrying out subsequent transformation. Meanwhile, the research is of great significance to the management and protection of water ecosystem. -
浮游植物是水生态系统中主要初级生产者和食物链的重要基础环节, 同时也是水环境变化的最直接响应者, 其群落结构特征直接影响生态系统的结构和功能[1]。另外, 环境因子变化也影响浮游植物丰度与群落结构的变化[2, 3]。研究表明, 浮游植物群落结构受到多种因子的共同调控, 与营养盐、温度和光照等条件密切相关[4-6]。同时, 浮游植物对金属离子具有很强的吸收和富集能力, 容易受到重金属污染并敏感地在分子、细胞和种群等水平上响应重金属的毒害效应, 导致浮游植物群落由多样化向单一化转变[7-11]。因此通过物种组成、物种丰度、优势种及多样性状况等群落结构特征来研究重金属污染区水体浮游植物与环境因子之间的关系, 对于揭示浮游植物群落演替的驱动因子、探究常规理化因子与重金属对浮游植物群落组成的影响权重、开展水生态系统的管理和保护, 均具有重要意义。
2013年5月湖南攸县“镉大米事件”经媒体报道后, 该区域水稻田土壤重金属污染研究已成为当前国内土壤重金属污染研究和治理的关注重点[12]; 被誉为“朱砂王国”的万山因汞矿大规模开采和冶炼, 给当地环境带来了极大破坏[13]。目前攸县和万山的重金属污染研究主要集中在土壤, 但是矿业活动引起的水污染最终会引起水质恶化和水生态系统破坏, 急需开展重金属污染区水体的浮游植物生态学调查研究, 以便为重金属污染的影响效应评估提供基础数据[14-17]。
鉴于此, 本文以攸县和万山两个重金属污染区不同类型水体为研究对象, 在野外原位调查的基础上运用多元技术分析浮游植物与环境因子间的相关关系, 探究重金属元素对浮游植物群落结构的影响权重, 以期为该区域水生态系统的管理和保护提供科学依据。
1. 材料与方法
1.1 研究区域概况
湖南省株洲市攸县位于湖南省东部, 介于东经113°09′—113°51′, 北纬26°46′—27°26′; 全县土地总面积为2648 km2, 是全国100个重点产煤县和商品煤基地。本研究在攸县境内共设置了6个采样点(图 1A), 其中YX1点位于电厂附近的硬化渠道, YX2点位于一条自然河流, YX3点位于一个人工池塘, YX4点位于人工池塘旁的小溪流, YX5点位于矿区排出的硫磺水河流, YX6为水稻田。
贵州省铜仁市万山区位于贵州省东部, 介于东经109°11′—109°14′, 北纬27°30′—27°32′; 国土面积842 km2, 汞矿的开发已有600余年的开采历史。在万山共设置了9个采样点(图 1B), 其中WS1点位于电厂旁边的冷却水池, WS2点位于道路旁的山间小瀑布, WS3点位于一硬化渠道旁的大水池, WS4点位于养鸡场附近的小溪, WS5点为矿渣处理坑的尾水, WS6点位于大水溪, WS7点位于人工水处理池, WS8点位于贵州水务旁的大水渠, WS9点位于龙江水库坝前。
1.2 水样采集与分析
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
用2%的电子级硝酸处理过的500 mL样品瓶采集金属检测水样, 冷藏运回实验室, 金属元素镉(Cd)、锰(Mn)、锶(Sr)、锌(Zn)、铁(Fe)、镍(Ni)、钴(Co)、铜(Cu)、铀(U)、铅(Pb)、铯(Se)、砷(As)、钡(Ba)、钒(V)、铋(Bi)、铷(Rb)和汞(Hg)等利用电感耦合等离子体-发射光谱仪ICP-OES(PekinElmer, OPTIMA 8000DV)进行测定。
1.3 浮游植物样品采集与分析
用25#浮游生物网采集浮游植物定性样品, 4%甲醛溶液固定。现场采集1000 mL水样装于塑料样品瓶, 用于浮游植物的鉴定与定量计数, 水样用鲁哥氏液(Lugol iodine solution)固定保存; 静置48h, 通过虹吸作用抽去多余的上清液, 经沉淀后定容至30 mL。充分振荡混匀, 吸取0.1 mL滴到浮游植物计数框上, 随后用显微镜(Olympus CX21, Japan)在放大倍数400倍下进行鉴定与计数, 浮游植物鉴定参考相关书籍[18, 19], 鉴定到种或属。
1.4 数据分析与统计
多样性指数计算 采用物种丰富度Species richness(D)、Shannon-Wiener多样性指数(H')和均匀性指数(J)对浮游植物群落多样性进行分析评价, 通过优势种优势度(Y)确定样本优势种群。利用Past version 2.17[20]计算各样本物种的多样性指数[21]。
Shannon-Wiener多样性指数(H')计算公式:
$H' \!=\! - \sum\limits_i^S {{P_i}} {\rm{lo}}{{\rm{g}}_2}{P_i}$
式中, H'为物种多样性指数、S为样品中的总物种数、Pi为第i种的个体数(ni)与总个体数(N)的比值(ni/N)。
均匀性指数(J)计算公式:
$J \!=\! H'\!/{\rm{lo}}{{\rm{g}}_2}S$
式中, J表示均匀度、H'表示种类多样性指数值、S表示样品中总种数。
优势种优势度(Y)的计算公式:
$ Y\!=\!\frac{{n}_{i}}{N}\!\times\! {f}_{i} $
式中, fi为第i个种在各样方中出现频率、ni为群落中第i个种在空间中的个体数量; N为群落中所有种的个体数总和。本次调查生物优势度Y≥0.02即为优势种[22]。
统计分析 利用Microsoft Excel, Spss Statistics 17.0和 Origin 2018对浮游植物各类群密度数据进行了处理和制图。对各采样位点物种数量组成做Upset分析, 对各组的群落组成做analysis of similarities (ANOSIM)分析, 对各门细胞密度与环境因子做Pearson相关性分析, 对物种组成与环境因子做Mantel test分析, 对样点分布情况做对应分析(CA), 对样点与各组环境因子做典范对应分析(CCA)。以上统计分析和作图均在R(version 3.6.2, https://mirrors.tuna.tsinghua.edu.cn/CRAN/)环境下完成。
2. 结果
2.1 群落组成
攸县和万山共鉴定浮游植物7门52属67种, 其中绿藻种类数最多, 有27种, 硅藻次之, 为21种, 蓝藻9种, 甲藻、隐藻、裸藻和金藻较少(图 2)。细胞密度变化范围为1.11×104—1.17×107 cells/L。攸县各样点蓝藻的相对丰度较高, 万山各样点硅藻的相对丰度较高。
YX1、YX2、YX3和YX6位点蓝藻相对丰度最高, YX4位点中硅藻占优势, YX5位点中绿藻占优势, 且YX5位点的绿藻主要是克里藻 Klebsormidium sp.。攸县的浮游植物优势种为7种(表 1)。
表 1 攸县和万山两地浮游植物优势种及优势度Table 1. Dominant species of phytoplankton in Youxian County and Wanshan District门
Phylum属种
Species拉丁名
Latin name优势度
Dominance攸县 万山 蓝藻 微小平裂藻 Merismopedia tenuissima 0.03 — 假鱼腥 Pseudoanabaena sp. 0.15 — 细鞘丝藻 Leptolyngbya sp. 0.15 — 硅藻 舟形藻 Navicula sp. 0.02 — 菱形藻 Nitzschia sp. 0.03 — 绿藻 衣藻 Chlamydomonas sp. 0.02 — 隐藻 隐藻 Cryptomonas sp. 0.03 0.03 甲藻 二叉角藻 Ceratium furcoides — 0.03 金藻 锥囊藻 Dinobryon sp. — 0.02 WS1以甲藻相对丰度最高, 主要为角藻, WS2、WS4、WS6、WS7和 WS8位点硅藻相对丰度最高, WS3位点金藻相对丰度较高, 主要为锥囊藻 Dinobryon sp., WS5位点蓝藻相对丰度最高, WS9位点绿藻相对丰度最高。万山的优势种较攸县要少, 仅3种(表 1)。
UpSetR分析结果(图 3)显示, 同时存在于攸县和万山所有样点的物种数为0, 出现在攸县所有样点的物种数为17个, 出现在万山所有样点的物种数为11个。攸县各样点共有物种主要是蓝藻、绿藻和硅藻。万山各样点共有物种主要是硅藻、绿藻、甲藻和金藻。
通过ANOSIM分析进一步探讨攸县和万山浮游植物群落结构的差异(图 4A), 结果显示两地群落结构差异P为0.083, 相异系数R为0.152, 表明攸县和万山群落结构组间差异大于组内差异。不同类型水体之间的群落结构差异分析显示(图 4B), 不同类型水体的群落结构差异P为0.549, 相异系数R为–0.022, 表明群落结构的组间差异小于组内差异。
2.2 群落多样性分析
如表 2和表 3所示, 攸县和万山的物种数分别在10—31和6—18, 两地物种丰富度存在较大差异(F=5.915, P<0.05); Shannon-Wiener指数范围分别在2.28—3.29和0.482—2.401, 攸县的Shannon-Wiener指数要高于万山, 两地差异显著(F=18.648, P<0.01); 均匀度分别在0.979—0.996和0.244—0.742, 攸县各样点的种间个体数分布较万山更均匀, 且差异显著(F=35.348, P<0.01)。
表 2 攸县各样点浮游植物多样性指数Table 2. The phytoplankton diversity index in Youxian County指标Index YX1 YX2 YX3 YX4 YX5 YX6 物种丰富度D 25 31 16 14 10 27 香农-威纳指数H′ 3.206 3.430 2.768 2.628 2.282 3.290 均匀性指数J 0.987 0.996 0.995 0.989 0.979 0.994 表 3 万山各样点浮游植物多样性指数Table 3. The phytoplankton diversity index in Wanshan District指标Index WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 物种丰富度D 15 14 17 7 6 10 14 13 18 香农-威纳指数H′ 1.605 2.233 1.421 1.317 0.482 1.963 1.438 2.267 2.401 均匀性指数J 0.332 0.666 0.244 0.533 0.270 0.712 0.301 0.742 0.613 攸县各样点浮游植物多样性指数显示, YX5的物种丰富度、Shannon-Wiener指数及均匀性指数都最低, 而YX2的3个多样性指数值都最高。万山各采样点浮游植物的多样性指数显示, WS5的物种丰富度和香农维纳指数最低, 均匀度较差。WS8和WS9的浮游植物多样性指数相对较高。
2.3 水环境状况
如表 4和表 5所示, 重金属Cd、Mn、Fe、Co、Ni、Cu、Zn、Sr、Pb和U含量的平均值攸县大于万山, Cr、As、Se、Ba、Rb和V含量的均值万山高于攸县。除攸县YX5样点外其他样点Cd、Cu和Zn含量低于地表水Ⅰ类限值, YX5样点Cd含量低于地表水Ⅱ类限值; 所有样点的As和Pb含量低于地表水Ⅰ类限值; 另外, 所有样点未检测到Hg。单因素方差分析显示, 两地Cr、Ba和V含量具有显著的差异(P<0.05), 攸县和万山两地的均值分别为2.614和8.158 μg/L、14.925和85.879 μg/L、0.260和1.434 μg/L, 其他各金属含量则差异不显著(P>0.05)。
表 4 攸县和万山重金属含量状况Table 4. Means (minimum-maximum) of heavy metal elements content in Youxian County and Wanshan District重金属含量Content of heavy
metal elements (μg/L)攸县Youxian County 万山Wanshan District df P值 平均值AVG 最大值Max 最小值Min 平均值AVG 最大值Max 最小值Min Cd 111 1.434 4.189 0.025 0.018 0.055 0.003 1.580 0.231 Cr 52 2.614 2.928 2.323 8.158 21.761 3.107 4.726 0.049 Mn 55 796.331 4652.234 0.082 25.748 169.649 0.114 1.555 0.234 Fe 57 241.882 816.575 85.542 212.187 308.844 106.823 0.093 0.765 Co 59 13.944 80.809 0.048 0.176 0.253 0.077 1.653 0.221 Ni 60 29.906 161.710 1.535 3.671 5.382 1.746 1.542 0.236 Cu 63 7.978 37.702 0.929 1.674 2.211 1.018 1.748 0.209 Zn 66 81.926 475.322 0.650 1.287 1.984 0.527 1.638 0.223 As 75 0.652 1.202 0.226 1.874 4.345 0.495 4.555 0.052 Se 82 0.679 0.963 0.492 22.897 60.258 1.077 4.077 0.065 Sr 88 412.259 1315.375 137.471 153.930 225.770 72.637 2.969 0.109 Ba 138 14.925 26.260 6.061 85.879 128.572 33.338 28.899 0.000 Pb 208 1.453 2.898 0.008 0.027 0.033 0.021 1.531 0.238 V 51 0.260 0.420 0.097 1.434 3.584 0.358 4.777 0.048 Bi 209 — — — — — — — — U 238 1.498 7.299 0.117 1.439 2.627 0.454 0.004 0.952 Rb 85 3.066 4.781 0.755 4.995 12.513 0.745 0.972 0.342 Hg — — — — — — — — 表 5 攸县和万山常规理化因子状况Table 5. Means (minimum-maximum) of routine physics and chemistry index in Youxian County and Wanshan District理化因子Physics and
chemistry index攸县Youxian County 万山Wanshan District df P值 平均值AVG 最大值Max 最小值Min 平均值AVG 最大值Max 最小值Min TN (mg/L) 1.63 2.01 1.27 6.48 18.67 1.28 2.971 0.108 ${\rm{NO}}_3^ - $ -N (mg/L)0.75 1.56 0.18 5.21 13.40 0.00 3.705 0.076 ${\rm{NH}}_4^ + $ -N (mg/L)0.09 0.19 0.02 0.29 1.35 0.03 1.022 0.330 TP (mg/L) 0.03 0.07 0.01 0.08 0.24 0.01 1.977 0.183 ${\rm{PO}}_4^{3 - }$ -P (mg/L)0.01 0.02 0.01 0.03 0.10 0.00 1.404 0.257 CODMn (mg/L) 2.46 5.51 0.73 1.13 3.43 0.23 3.108 0.101 Chl. a (μg/L) 3.56 8.62 0.27 9.59 71.96 0.28 0.381 0.548 WT (℃) 20.45 22.10 18.10 10.17 12.00 5.10 116.405 0.000 DO (mg/L) 8.08 11.00 2.50 10.20 12.90 6.80 3.226 0.096 SPC (μS/cm) 395.05 946.00 121.10 634.02 1247.00 282.80 1.172 0.213 pH 7.23 8.32 3.86 7.96 8.87 7.71 1.554 0.234 ORP (mV) 192.93 484.50 41.90 100.43 192.30 43.50 3.002 0.107 TC (mg/L) 18.74 28.79 1.20 31.33 47.61 9.49 3.888 0.070 IC (mg/L) 17.49 24.86 2.87 29.82 45.16 11.77 5.150 0.041 TOC (mg/L) 1.81 5.70 0.00 1.81 8.12 0.00 0.000 0.999 This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
其中YX5点的水体呈强酸性, pH为3.86, 其他位点为中性或弱碱性; 同时YX5点具有较高的氧化性和导电性, ORP和SPC分别为484.5和946.0; 并且其多种重金属含量也远远高于其他点位, Cd为攸县境内重要的重金属污染元素, 在该位点含量最高。
WS5、WS6和WS7各样点的N含量较高, 分别为13.14、13.97和18.67 mg/L; WS1位点Chl. a含量最高, 为71.96 μg/L; WS9位点Mn的含量最高, 为169.649 μg/L。
2.4 浮游植物与环境因子的关系
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 6 浮游植物丰度与环境因子的Pearson相关性分析Table 6. Pearson correlation coefficients between phytoplankton abundance and environmental factors环境因子Environmental factor 蓝藻Cyanophyta 硅藻Bacillariophyta 绿藻Chlorophyta 甲藻Pyrroptata 隐藻Cryptophyta 裸藻Euglenophyta 金藻Chrysophyta 总计
Total${\rm{NO}}_3^ - $ -N–0.333 –0.513 –0.257 –0.414 –0.492 –0.692** 0.014 –0.453 ${\rm{NH}}_4^ + $ -N–0.517* –0.064 0.134 0.041 –0.184 –0.334 –0.071 –0.166 CODMn 0.447 0.535* 0.613* 0.434 0.477 0.539* –0.124 0.585* ORP 0.378 0.354 0.423 0.140 0.366 0.591* –0.089 0.418 TOC 0.291 0.087 0.146 0.572* 0.304 0.285 –0.085 0.289 Cr –0.774** –0.244 –0.216 –0.142 –0.477 –0.398 –0.227 –0.406 Se –0.664** –0.312 –0.274 –0.329 –0.481 –0.640* –0.322 –0.498 Ba –0.597* –0.194 –0.331 0.203 –0.142 –0.139 0.067 –0.167 V –0.515* –0.259 –0.108 –0.350 –0.546* –0.448 –0.300 –0.356 注: *. 相关关系在0.05水平(双尾检测), **. 相关关系在0.01水平(双尾检测)Note: *. Correlation is significant at the 0.05 level (2-tailed), **. Correlation is significant at the 0.01 level (2-tailed) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
图 5 浮游植物群落组成的环境驱动因素Mantel’s p表示Mantel test的相关关系的检测水平; Mantel’s r表示Mantel test的相关系数; corr表示Pearson相关系数Figure 5. Environmental drivers of phytoplankton community compositionPairwise comparison of environmental factors were shown with a color gradient denoting Pearson’s correlation coefficients. Phytoplankton community composition was related to each environmental factor by partial Mantel testsThis page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
CCA典范相关性分析发现(图 6), F2、F3和F4等是影响浮游植物群落组成的关键因素。F2主要为C、P和pH、DO, 其与CCA1轴的相关系数高达0.92。DO与CCA1轴的回归分析相关系数最高。F3的环境因子包含ORP, 氧化还原电位对许多元素的浓度和形式具有重要的影响, 对生态系统中的生物转化具有重要的作用。F4为重金属指标, 其与CCA1轴的相关系数为0.44。
3. 讨论
3.1 浮游植物群落结构
受矿业活动的影响, 攸县与万山的土壤与水体在一定程度上都受到了重金属污染[14-16]。攸县浮游植物物种组成为绿藻-硅藻-蓝藻型, 丰度组成为蓝藻-硅藻-绿藻型; 万山浮游植物物种组成为绿藻-硅藻型, 丰度组成主要为硅藻型, 个别位点为蓝藻或绿藻型。从物种组成来看, 两者都是以绿藻和硅藻为优势种群, 这与受重金属影响的贵州高原水库、云南高原湖泊浮游植物物种组成结果一致, 都为绿藻-硅藻型[13, 23]。与此相反, 铜陵矿区河流浮游植物物种组成为硅藻-绿藻型, 这可能是由河流型水体特征及硅藻物种的生理特性所决定[24]。硅藻具有坚硬的硅质, 能抵抗机械损伤, 能够在流速波动较大的水体中生存[22]。从丰度组成来看, 攸县以喜高温蓝藻为主, 而万山则以喜低温的硅藻为主, 水温是两地群落差异的重要影响因子。
3.2 浮游植物群落与环境因子的关系
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
矿山开采、尾矿堆放和矿石选矿等矿业活动引起的重金属污染依然严峻。浮游植物作为食物链的最低端及水环境的主要初级生产者, 可以快速敏感地响应水体金属污染[7]。Pearson相关性分析显示Cr、Se、Ba和V与蓝藻细胞丰度具有显著负相关关系, Se与裸藻细胞丰度同样具有负相关关系。除Se外, 另外3种金属都属于非必需金属, 对浮游植物具有毒性[35]。在Cr污染土壤中, 随污染程度增高微生物数量降低; 不同形态Cr对微生物的毒害作用也不相同, 阴离子态Cr(NaCrO4)对微生物毒害程度大于阳离子态Cr(CrCl3)[38]; Ni作为有机体进行正常生理活动所不可缺少的元素, 一般来自成土母质, 同时也是我国城市土壤污染程度最低的重金属之一[39]。在万山各采样点蓝藻与Cr和Ni具有显著的负相关关系, 与上述报道类似, 同时说明在两地分布的Ni是高于浮游植物对其的积累阈值的[16, 38]。两地硅藻物种组成与Co、Ni、Zn、Cd和Pb具有显著相关性。Co、Ni和Zn为有机体所必须金属, Pb和Cd为有毒重金属, 其大量输入会严重影响水体水质, 使浮游植物生长受到抑制, 导致浮游植物群落结构由多样化向单一化转变, 破坏了湖泊生态系统的健康[8, 9]。YX5位点水体呈强酸性, 浮游植物群落单一, 以耐污种菱形藻及克里藻占优势, 并且Cd含量也远高于其他位点。煤矿排放的硫磺水致使水体呈酸性, 超出许多浮游植物的耐受范围, 导致耐低pH的克里藻大量增殖[40]。综上所述, 环境中的重金属成分及其含量对水体浮游植物群落结构具有显著的影响。
浮游植物群落组成及生物量与环境因子存在密切的关系, 能较好地反映水体状况及变化。反之, 环境因子变化也影响浮游植物群落组成和生物量的变化。CCA结果显示常规理化因子对攸县和万山两地浮游植物群落组成的影响大于金属元素, 这与铜陵市河流冬季浮游植物研究的结果一致[24]。在本研究中, 部分重金属对浮游植物群落组成及细胞丰度影响不显著, 原因可能是上覆水中其含量较低, 对浮游植物及其群落的影响有限。
4. 结论
在秋冬季, 攸县浮游植物物种组成为绿藻-硅藻-蓝藻型, 丰度组成为蓝藻-硅藻-绿藻型; 万山浮游植物物种组成为绿藻-硅藻型, 丰度组成则为硅藻型, 个别位点为蓝藻或绿藻型。CCA结果显示常规理化因子对攸县和万山两地浮游植物群落组成的影响大于金属元素。
-
图 5 浮游植物群落组成的环境驱动因素
Mantel’s p表示Mantel test的相关关系的检测水平; Mantel’s r表示Mantel test的相关系数; corr表示Pearson相关系数
Figure 5. Environmental drivers of phytoplankton community composition
Pairwise comparison of environmental factors were shown with a color gradient denoting Pearson’s correlation coefficients. Phytoplankton community composition was related to each environmental factor by partial Mantel tests
表 1 攸县和万山两地浮游植物优势种及优势度
Table 1 Dominant species of phytoplankton in Youxian County and Wanshan District
门
Phylum属种
Species拉丁名
Latin name优势度
Dominance攸县 万山 蓝藻 微小平裂藻 Merismopedia tenuissima 0.03 — 假鱼腥 Pseudoanabaena sp. 0.15 — 细鞘丝藻 Leptolyngbya sp. 0.15 — 硅藻 舟形藻 Navicula sp. 0.02 — 菱形藻 Nitzschia sp. 0.03 — 绿藻 衣藻 Chlamydomonas sp. 0.02 — 隐藻 隐藻 Cryptomonas sp. 0.03 0.03 甲藻 二叉角藻 Ceratium furcoides — 0.03 金藻 锥囊藻 Dinobryon sp. — 0.02 表 2 攸县各样点浮游植物多样性指数
Table 2 The phytoplankton diversity index in Youxian County
指标Index YX1 YX2 YX3 YX4 YX5 YX6 物种丰富度D 25 31 16 14 10 27 香农-威纳指数H′ 3.206 3.430 2.768 2.628 2.282 3.290 均匀性指数J 0.987 0.996 0.995 0.989 0.979 0.994 表 3 万山各样点浮游植物多样性指数
Table 3 The phytoplankton diversity index in Wanshan District
指标Index WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 物种丰富度D 15 14 17 7 6 10 14 13 18 香农-威纳指数H′ 1.605 2.233 1.421 1.317 0.482 1.963 1.438 2.267 2.401 均匀性指数J 0.332 0.666 0.244 0.533 0.270 0.712 0.301 0.742 0.613 表 4 攸县和万山重金属含量状况
Table 4 Means (minimum-maximum) of heavy metal elements content in Youxian County and Wanshan District
重金属含量Content of heavy
metal elements (μg/L)攸县Youxian County 万山Wanshan District df P值 平均值AVG 最大值Max 最小值Min 平均值AVG 最大值Max 最小值Min Cd 111 1.434 4.189 0.025 0.018 0.055 0.003 1.580 0.231 Cr 52 2.614 2.928 2.323 8.158 21.761 3.107 4.726 0.049 Mn 55 796.331 4652.234 0.082 25.748 169.649 0.114 1.555 0.234 Fe 57 241.882 816.575 85.542 212.187 308.844 106.823 0.093 0.765 Co 59 13.944 80.809 0.048 0.176 0.253 0.077 1.653 0.221 Ni 60 29.906 161.710 1.535 3.671 5.382 1.746 1.542 0.236 Cu 63 7.978 37.702 0.929 1.674 2.211 1.018 1.748 0.209 Zn 66 81.926 475.322 0.650 1.287 1.984 0.527 1.638 0.223 As 75 0.652 1.202 0.226 1.874 4.345 0.495 4.555 0.052 Se 82 0.679 0.963 0.492 22.897 60.258 1.077 4.077 0.065 Sr 88 412.259 1315.375 137.471 153.930 225.770 72.637 2.969 0.109 Ba 138 14.925 26.260 6.061 85.879 128.572 33.338 28.899 0.000 Pb 208 1.453 2.898 0.008 0.027 0.033 0.021 1.531 0.238 V 51 0.260 0.420 0.097 1.434 3.584 0.358 4.777 0.048 Bi 209 — — — — — — — — U 238 1.498 7.299 0.117 1.439 2.627 0.454 0.004 0.952 Rb 85 3.066 4.781 0.755 4.995 12.513 0.745 0.972 0.342 Hg — — — — — — — — 表 5 攸县和万山常规理化因子状况
Table 5 Means (minimum-maximum) of routine physics and chemistry index in Youxian County and Wanshan District
理化因子Physics and
chemistry index攸县Youxian County 万山Wanshan District df P值 平均值AVG 最大值Max 最小值Min 平均值AVG 最大值Max 最小值Min TN (mg/L) 1.63 2.01 1.27 6.48 18.67 1.28 2.971 0.108 ${\rm{NO}}_3^ - $ -N (mg/L)0.75 1.56 0.18 5.21 13.40 0.00 3.705 0.076 ${\rm{NH}}_4^ + $ -N (mg/L)0.09 0.19 0.02 0.29 1.35 0.03 1.022 0.330 TP (mg/L) 0.03 0.07 0.01 0.08 0.24 0.01 1.977 0.183 ${\rm{PO}}_4^{3 - }$ -P (mg/L)0.01 0.02 0.01 0.03 0.10 0.00 1.404 0.257 CODMn (mg/L) 2.46 5.51 0.73 1.13 3.43 0.23 3.108 0.101 Chl. a (μg/L) 3.56 8.62 0.27 9.59 71.96 0.28 0.381 0.548 WT (℃) 20.45 22.10 18.10 10.17 12.00 5.10 116.405 0.000 DO (mg/L) 8.08 11.00 2.50 10.20 12.90 6.80 3.226 0.096 SPC (μS/cm) 395.05 946.00 121.10 634.02 1247.00 282.80 1.172 0.213 pH 7.23 8.32 3.86 7.96 8.87 7.71 1.554 0.234 ORP (mV) 192.93 484.50 41.90 100.43 192.30 43.50 3.002 0.107 TC (mg/L) 18.74 28.79 1.20 31.33 47.61 9.49 3.888 0.070 IC (mg/L) 17.49 24.86 2.87 29.82 45.16 11.77 5.150 0.041 TOC (mg/L) 1.81 5.70 0.00 1.81 8.12 0.00 0.000 0.999 表 6 浮游植物丰度与环境因子的Pearson相关性分析
Table 6 Pearson correlation coefficients between phytoplankton abundance and environmental factors
环境因子Environmental factor 蓝藻Cyanophyta 硅藻Bacillariophyta 绿藻Chlorophyta 甲藻Pyrroptata 隐藻Cryptophyta 裸藻Euglenophyta 金藻Chrysophyta 总计
Total${\rm{NO}}_3^ - $ -N–0.333 –0.513 –0.257 –0.414 –0.492 –0.692** 0.014 –0.453 ${\rm{NH}}_4^ + $ -N–0.517* –0.064 0.134 0.041 –0.184 –0.334 –0.071 –0.166 CODMn 0.447 0.535* 0.613* 0.434 0.477 0.539* –0.124 0.585* ORP 0.378 0.354 0.423 0.140 0.366 0.591* –0.089 0.418 TOC 0.291 0.087 0.146 0.572* 0.304 0.285 –0.085 0.289 Cr –0.774** –0.244 –0.216 –0.142 –0.477 –0.398 –0.227 –0.406 Se –0.664** –0.312 –0.274 –0.329 –0.481 –0.640* –0.322 –0.498 Ba –0.597* –0.194 –0.331 0.203 –0.142 –0.139 0.067 –0.167 V –0.515* –0.259 –0.108 –0.350 –0.546* –0.448 –0.300 –0.356 注: *. 相关关系在0.05水平(双尾检测), **. 相关关系在0.01水平(双尾检测)Note: *. Correlation is significant at the 0.05 level (2-tailed), **. Correlation is significant at the 0.01 level (2-tailed) -
[1] Richardson T L. Mechanisms and pathways of small-phytoplankton export from the surface ocean [J]. Annual Review of Marine Science, 2019, 11(1): 57-74. doi: 10.1146/annurev-marine-121916-063627
[2] Hulyal S B, Kaliwal B B. Dynamics of phytoplankton in relation to physico-chemical factors of Almatti Reservoir of Bijapur District, Karnataka State [J]. Environmental Monitoring and Assessment, 2009, 153(1-4): 45-59. doi: 10.1007/s10661-008-0335-1
[3] Schagerl M, Bloch I, Angeler D G, et al. The use of urban clay-pit ponds for human recreation: assessment of impacts on water quality and phytoplankton assemblages [J]. Environmental Monitoring and Assessment, 2010, 165(1-4): 283-293. doi: 10.1007/s10661-009-0945-2
[4] Zhang M, Shi X, Yang Z, et al. Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu [J]. Science of The Total Environment, 2018(645): 876-886.
[5] Becker V, Caputo L, Ordóñez J, et al. Driving factors of the phytoplankton functional groups in a deep Mediterranean Reservoir [J]. Water Research, 2010, 44(11): 3345-3354. doi: 10.1016/j.watres.2010.03.018
[6] Vogt R J, Sharma S, Leavitt P R. Decadal regulation of phytoplankton abundance and water clarity in a large continental reservoir by climatic, hydrologic and trophic processes [J]. Journal of Great Lakes Research, 2015(41): 81-90.
[7] 王颖雪, 王沛芳, 王超, 等. 太湖浮游植物中重金属含量的季节变化特征及湖区差异 [J]. 湖泊科学, 2015, 27(2): 258-265. doi: 10.18307/2015.0209 Wang Y X, Wang P F, Wang C, et al. Seasonal variation and distribution characteristics of heavy metals in phytoplankton of different parts of Lake Taihu [J]. Journal of Lake Sciences, 2015, 27(2): 258-265. doi: 10.18307/2015.0209
[8] 高玉荣, 许木启. 乐安江重金属污染对浮游植物群落结构的影响 [J]. 应用与环境生物学报, 1996(2): 175-183. doi: 10.3321/j.issn:1006-687X.1996.02.001 Gao Y R, Xu M Q. A study on the effect of heavy mental pollution on phytoplankton community structure [J]. Chinese Journal Apply Environment Biology, 1996(2): 175-183. doi: 10.3321/j.issn:1006-687X.1996.02.001
[9] 徐永梅. 阳宗海砷浓度与浮游植物的变化分析 [J]. 环境科学导刊, 2013, 32(5): 62-64. doi: 10.3969/j.issn.1673-9655.2013.05.017 Xu Y M. Arsenic concentration and phytoplankton change in Lake Yangzong [J]. Environmental Science Survey, 2013, 32(5): 62-64. doi: 10.3969/j.issn.1673-9655.2013.05.017
[10] Sainz A, Grande J A, de la Torre M L. Characterization of heavy metal discharge into the Ria of Huelva [J]. Environment International, 2004, 30(4): 557-566. doi: 10.1016/j.envint.2003.10.013
[11] Borrego J M M D. Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain) [J]. Environmental Geology, 2002, 41(7): 785-796. doi: 10.1007/s00254-001-0445-3
[12] 张敏, 王美娥, 陈卫平, 等. 湖南攸县典型煤矿和工厂区水稻田土壤镉污染特征及污染途径分析 [J]. 环境科学, 2015, 36(4): 1425-1430. Zhang M, Wang M E, Chen W P, et al. Characteristics and inputs of Cd contamination in paddy soils in typical mining and industrial areas in Youxian County, Hunan Province [J]. Environmental Science, 2015, 36(4): 1425-1430.
[13] 丁振华, 王文华, 瞿丽雅, 等. 贵州万山汞矿区汞的环境污染及对生态系统的影响 [J]. 环境科学, 2004(2): 111-114. doi: 10.3321/j.issn:0250-3301.2004.02.023 Ding Z H, Wang W H, Qu L Y, et al. Mercury pollution and its ecosystem effects in Wanshan mercury miner area, Guizhou [J]. Environmental Science, 2004(2): 111-114. doi: 10.3321/j.issn:0250-3301.2004.02.023
[14] 张敏. 湖南攸县水稻田土壤镉污染评估与控制 [D]. 太原: 山西大学, 2015: 8-11. Zhang M. Assessment and control of Cd polluted paddy soils in Youxian, Hunan Province [D]. Taiyuan: Shanxi University, 2015: 8-11.
[15] 常慧. 贵州省典型污染区镉的空间分布和来源识别 [D]. 北京: 中国地质大学, 2019: 1-57. Chang H. Spatial Distribution and source identification of cadmium in typical polluted areas of Guizhou Province: A case study of Wanshan mercury mine [D]. Beijing: China University of Geosciences, 2019: 1-57.
[16] 苟体忠, 阮运飞. 万山汞矿区土壤重金属污染特征及来源解析 [J]. 化工环保, 2020, 40(3): 1-7. Gou T Z, Ruan Y F. Characteristics and source of heavy metals in contaminated soil in Wanshan mercury mine area [J]. Environmental Protection of Chemical Industry, 2020, 40(3): 1-7.
[17] 胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价 [J]. 生态环境学报, 2015, 24(5): 879-885. Hu G C, Zhang L J, Qi J Y, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan Mercury Mine Area, Guizhou Province [J]. Ecology and Environmental Sciences, 2015, 24(5): 879-885.
[18] 章宗涉, 黄祥飞. 淡水浮游生物研究方法 [M]. 北京: 北京出版社, 1991: 333-362. Zhang Z S, Huang X F. Research Methods of Freshwater Plankton [M]. Beijing: Beijing Press, 1991: 333-362.
[19] 胡鸿钧, 魏印心. 中国淡水藻类-系统, 分类及生态 [M]. 北京: 科学出版社, 2006: 1-1023. Hu H J, Wei Y X. The Freshwater Algae of China: Systematics, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 1-1023.
[20] Hammer O, Harper D A T, Ryan P D. PAST: paleontological statistics software package for education and data analysis [J]. Palaeontologia Electronica, 2001, 1(4): 9.
[21] 董雅欠, 赵文, 季世琛, 等. 北京潮白河水系浮游动物群落结构特征及水质评价 [J]. 大连海洋大学学报, 2020, 35(3): 424-431. Dong Y Q, Zhao W, Ji S C, et al. Community structure of zooplankton and water quality evaluation in Chaobai River system in Beijing [J]. Journal of Dalian Ocean University, 2020, 35(3): 424-431.
[22] 郝媛媛, 孙国钧, 张立勋, 等. 黑河流域浮游植物群落特征与环境因子的关系 [J]. 湖泊科学, 2014, 26(1): 121-130. doi: 10.18307/2014.0115 Hao Y Y, Sun G J, Zhang L X, et al. Relationship between community characteristics of the phytoplankton and environmental factors in Heihe River basin [J]. Journal of Lake Sciences, 2014, 26(1): 121-130. doi: 10.18307/2014.0115
[23] 陈倩. 贵州高原水库浮游植物对金属的富集与水体富营养化关系研究 [D]. 贵阳: 贵州师范大学, 2019: 3-48. Chen Q. Study on the relationship between metal enrichment and eutrophication of phytoplankton from in Guizhou Plateau Reservoir [D]. Guiyang: Guizhou Normal University, 2019: 3-48.
[24] 王丽, 魏伟, 周平, 等. 铜陵市河流冬季浮游植物群落结构及其与环境因子的关系 [J]. 应用生态学报, 2013, 24(1): 243-250. Wang L, Wei W, Zhou P, et al. Phytoplankton’s community structure and its relationships with environmental factors in the rivers of Tongling City, Anhui Province of East China in winter [J]. Chinese Journal of Applied Ecology, 2013, 24(1): 243-250.
[25] 龚川, 贡丹丹, 刘德富, 等. 不同光照强度下香溪河浮游植物演替过程研究 [J]. 环境科学研究, 2020, 33(5): 1214-1224. Gong C, Gong D D, Liu D F, et al. Phytoplankton succession process in Xiangxi River under different light intensity [J]. Research of Environmental Science, 2020, 33(5): 1214-1224.
[26] 朱永锋, 琚珊珊, 蔡庆华, 等. 三峡水库春季浮游植物群落特征及影响因素 [J]. 长江流域资源与环境, 2019, 28(12): 2893-2900. Zhu Y F, Ju S S, Cai Q H, et al. Community characteristics of the spring phytoplankton in the Three Gorges Reservoir and the influencing factors [J]. Resources and Environment in the Yangtze Basin, 2019, 28(12): 2893-2900.
[27] Li J, Zhang J, Huang W, et al. Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa [J]. Marine Pollution Bulletin, 2016, 110(1): 93-98. doi: 10.1016/j.marpolbul.2016.06.077
[28] Jankowiak J, Hattenrath Lehmann T, Kramer B J, et al. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie [J]. Limnology and Oceanography, 2018, 64(3): 1347-1370.
[29] Chen Q, Wang M, Zhang J, et al. Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation [J]. Water Research, 2019(163): 114890.
[30] 江源, 王博, 杨浩春, 等. 东江干流浮游植物群落结构特征及与水质的关系 [J]. 生态环境学报, 2011, 20(11): 1700-1705. doi: 10.3969/j.issn.1674-5906.2011.11.020 Jiang Y, Wang B, Yang H C, et al. Community structure of phytoplankon and its relation with water quality in Dongjiang River [J]. Ecology and Environmental Sciences, 2011, 20(11): 1700-1705. doi: 10.3969/j.issn.1674-5906.2011.11.020
[31] 沈韫芬, 龚循矩, 顾曼如. 用PFU原生动物群落进行生物监测的研究 [J]. 水生生物学报, 1985, 9(4): 299-308. Shen Y F, Gong X J, Gu M R. Studies of biological monitoring by using PFU protozoan community [J]. Acta Hydrobiologica Sinica, 1985, 9(4): 299-308.
[32] Zhu J, Hong D D, Wakisaka M. Phytic Acid extracted from rice bran as a growth promoter for Euglena gracilis [J]. Open Chemistry, 2019, 17(1): 57-63. doi: 10.1515/chem-2019-0006
[33] 刘祚屹, 綦世斌, 何宁, 等. 碳、氮、磷营养对7种海洋微藻种群增长的影响研究 [J]. 南方水产科学, 2020, 16(1): 87-97. doi: 10.12131/20190089 Liu Z Y, Qi S B, He N, et al. Effects of nitrogen, phosphorus and carbon on growth of seven marine microalgae [J]. South China Fisheries Science, 2020, 16(1): 87-97. doi: 10.12131/20190089
[34] 李璇, 周燕平, 夏琼琼, 等. 磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展 [J]. 环境化学, 2020, 39(8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401 Li X, Zhou Y P, Xia Q Q, et al. The impacts of phosphorus stress in the growth and metabolism of algae and its response mechanism [J]. Environmental Chemistry, 2020, 39(8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401
[35] 刘永健. 东海原甲藻磷胁迫响应基因的分析及细胞死亡相关基因的克隆与分析 [D]. 青岛: 中国海洋大学, 2007: 1-97. Liu Y J. Cloning and gene expression analysis of phosphate -stress gene and cell-lysis gene of prorocentrum Donghaiense [D]. Qingdao: Ocean University of China, 2007: 1-97.
[36] 陈开宁, 周万平, 鲍传和, 等. 浮游植物对湖泊水体生态重建的响应——以太湖五里湖大型围隔示范工程为例 [J]. 湖泊科学, 2007(4): 359-366. doi: 10.3321/j.issn:1003-5427.2007.04.002 Chen K N, Zhou W P, Bao C H, et al. Response of phytoplankton to ecological restoration in eutrophic lakes: an experimental large enclosure in Wuli Lake, Lake Taihu [J]. Journal of Lake Science, 2007(4): 359-366. doi: 10.3321/j.issn:1003-5427.2007.04.002
[37] 张宾, 章飞军, 郭远明, 等. 舟山渔场海域春夏季氮磷分布及其对浮游植物的限制 [J]. 浙江海洋学院学报(自然科学版), 2011, 30(3): 185-189. Zhang B, Zhang F J, Guo Y M, et al. Micronutrients distributions and their Limitation on phytoplankton in the Zhoushan fishery ground in spring and summer 2011 [J]. Journal of Zhejiang Ocean University (
Natural Science ) , 2011, 30(3): 185-189. [38] Ueda K, Kobayashi M, Takahashi E. Effect of anionic heavy metals on ammonification and nitrification in soil [J]. Soil Science and Plant Nutrition, 1988, 34(1): 139-146. doi: 10.1080/00380768.1988.10415587
[39] Sun C, Liu J, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China [J]. Chemosphere, 2013, 92(5): 517-523. doi: 10.1016/j.chemosphere.2013.02.063
[40] Akaloud P, Lukešová A, Malavasi V, et al. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta) [J]. Plant Ecology and Evolution, 2014, 147(3): 333-345. doi: 10.5091/plecevo.2014.989
-
期刊类型引用(6)
1. 赵本宣,金向鹏,郑智恩,赵晟. 千峡湖浮游植物群落特征及与主要环境因子的关系. 环境生态学. 2024(04): 50-56 . 百度学术
2. 宋娇,汪震,朱忠胜,李涛,陈岚英,谭庆东. 遵义湘江河浮游植物群落结构及多样性调查. 水产养殖. 2024(08): 12-17+24 . 百度学术
3. 宋高飞,张羽珩,邱鹏飞,阮港,毕永红. 陆水水库浮游植物群落结构特征及其影响因素. 水生态学杂志. 2024(05): 49-57 . 百度学术
4. 李红海,米武娟,赵重宇,毕永红,冯德金,孔红霞,宋高飞. 襄阳汉江国家湿地公园浮游植物群落结构特征及其影响因素. 河南师范大学学报(自然科学版). 2023(05): 115-122 . 百度学术
5. 秦华伟,陶慧敏,张娟,张潇文,宋鑫,谷伟丽,王凯,盖芸芸. 营养盐和重金属等环境因子对莱州湾浮游植物的影响. 海洋湖沼通报. 2023(05): 134-141 . 百度学术
6. 张晓东,卢志宏,王婷,杨传东,吴震洋. 万山汞矿区泽陆蛙重金属富集特征及健康评价. 环境科学与技术. 2023(10): 170-180 . 百度学术
其他类型引用(3)