Abstract:
Triplophysa venusta, one of the native fish species of Jinsha River with well conserved in Yunnan province, have been dramatically decreased because of the construction of hydropower station in its natural habitat and the continuous drought in Yunnan province. In this study, the population viability analysis (PVA) for
T. venusta was simulated by VORTEX model under different scenarios. Its minimum viable population (MVP) was also estimated. The results suggested that catastrophe is the key factor for population survival. The population reproductive rate and the mortality of immature individuals are also important factors that affected the population viability in
T. venusta. In contrast, there was no significant influence by environmental carrying capacity on population viability. Moreover, the continuing harvest of 2000 mature individuals per year for 40 years could make 100% extinction in 100 years. In contrast, the extinction probability could reduce to 35.8% in 100 years by the continuing supplementation of 1000 one-year-old indivi-duals per year for 20 years. Simulation analysis using VORTEX model suggested that 16000 individuals could permit a survival of 95% probability in 100 years and it is the MVP in
T. venusta. Consequently, our study displays that the effective methods of conservation and recovery in
T. venusta are diminishing the frequency of catastrophe, cutting the immature individual mortality, and increasing the population fecundity. This study provides a good theoretical foundation for population protection, fishery management, as well as artificial breeding and releasing for
T. venusta.