氨氮对鱼类毒性的影响因子及气呼吸型鱼类耐氨策略

张云龙, 张海龙, 王凌宇, 顾贝易, 樊启学

张云龙, 张海龙, 王凌宇, 顾贝易, 樊启学. 氨氮对鱼类毒性的影响因子及气呼吸型鱼类耐氨策略[J]. 水生生物学报, 2017, 41(5): 1157-1168. DOI: 10.7541/2017.144
引用本文: 张云龙, 张海龙, 王凌宇, 顾贝易, 樊启学. 氨氮对鱼类毒性的影响因子及气呼吸型鱼类耐氨策略[J]. 水生生物学报, 2017, 41(5): 1157-1168. DOI: 10.7541/2017.144
ZHANG Yun-Long, ZHANG Hai-Long, WANG Ling-Yu, GU Bei-Yi, FAN Qi-Xue. IMPACT FACTORS OF AMMONIA TOXICITY AND STRATEGIES FOR AMMONIA TOLERANCE IN AIR-BREATHING FISH: A REVIEW[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(5): 1157-1168. DOI: 10.7541/2017.144
Citation: ZHANG Yun-Long, ZHANG Hai-Long, WANG Ling-Yu, GU Bei-Yi, FAN Qi-Xue. IMPACT FACTORS OF AMMONIA TOXICITY AND STRATEGIES FOR AMMONIA TOLERANCE IN AIR-BREATHING FISH: A REVIEW[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(5): 1157-1168. DOI: 10.7541/2017.144

氨氮对鱼类毒性的影响因子及气呼吸型鱼类耐氨策略

基金项目: 安徽省高等学校自然科学研究项目(KJ2017A130);国家科技支撑计划(2012BAD25B08和2012BAD25B00)资助
详细信息
    作者简介:

    张云龙(1989—), 男, 安徽合肥人; 讲师, 博士; 主要从事鱼类增养殖研究。E-mail: zhangyunlong@ahau.edu.cn

    通信作者:

    樊启学(1962—), 男, 湖北潜江人; 教授; 主要从事鱼类增养殖及水域生态学研究。E-mail: fanqixue@mail.hzau.edu.cn

  • 中图分类号: Q178.1

IMPACT FACTORS OF AMMONIA TOXICITY AND STRATEGIES FOR AMMONIA TOLERANCE IN AIR-BREATHING FISH: A REVIEW

Funds: Supported by the Provincial Natural Science Research Project of Anhui Provincial Higher University Education (KJ2017A130); the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAD25B08, 2012BAD25B00)
    Corresponding author:
  • 摘要: 氨氮广泛存在于养殖水体中, 在氨氮过高的养殖环境下可能会导致鱼类的大量死亡。从生态、环境及养殖效益角度来看, 研究氨氮对鱼类的毒性以及鱼类应对环境或体内高氨浓度的策略均具有重要意义。某些鱼类具有其特殊的策略来降低氨毒性, 使得这些种类能适应极高的环境或体内氨浓度。这些耐氨策略主要为(1)合成谷氨酰胺、(2)合成尿素排出、(3)增强机体 ${\rm{NH}}_4^ + $ 排泄、(4)Rh蛋白促进氨解毒、(5)降低周围环境pH、(6)NH3挥发和体表碱化、(7)降低体内氨生成、(8)特定氨基酸代谢生成丙氨酸、(9)组织高氨耐受性。鱼类的氨耐受策略较多而且是可变的, 主要受特定种类的生活习性和栖息环境影响。文章综述了氨氮对鱼类的毒性机理以及鱼类的应对策略, 为相关的研究提供基础资料。
    Abstract: Ammonia distributes widely in aquaculture water, and is a major issue in the massive mortality rate of fish species with a high ammonia aquaculture environment. Studies on ammonia toxicity and defense in fish are important because of ecological, environmental, and economical relevance. Some fish species have specific strategies to deal with ammonia loading, so that they can tolerate high levels of environmental or internal ammonia. These strategies can be categorized into: (1) glutamine synthesis; (2) urea synthesis and excretion; (3) active ${\rm{NH}}_4^ + $ excretion; (4) ammonia detoxification, improved by Rh glycoproteins; (5) lowering of ambient pH; (6) NH3 volatilization and alkalization of the body surface; (7) reduction in body ammonia production; (8) amino acid catabolism leading to the alanine form; and (9) high tissue and organ ammonia tolerance. The response of fish species that are able to ameliorate ammonia toxicity are many and varied, depending on the behaviour of the species and its habitat environment. This paper summarizes ammonia toxicity, as it is hoped that this review can provide basic information on ammonia detoxification mechanisms in air-breathing fish species.
  • This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    氨氮广泛存在于水环境中, 由动植物排放或者微生物分解有机质产生[1]。而水生动物体内的氨则主要是由于氨基酸代谢产生的, 动物肠道分解食物中的蛋白质是氨基酸的主要来源[5, 6]。研究表明鱼类摄入食物中40%—60%的氮会在24h内排泄出[7, 8]。除此之外, 鱼类在饥饿状态下也会将肌肉蛋白质代谢为氨基酸, 以提供ATP源或者碳水化合物[5, 9]。而当暴露于较高的环境氨氮中时, 鱼类会降低自身的氨基酸代谢速度以减少体内氨的生成, 以保护机体免于氨氮毒性[7, 10]。已有大量的研究报道了氨氮对鱼类的毒性, 如高环境氨氮会导致虹鳟(Oncorhynchus mykiss)、鲤(Cyprinus carpio)和鲫(Carssius auratus)鳃结构异化[11], 也会导致牙鲆(Paralichthys olivaceus)鳃结构变化[12]、造成薄氏大弹涂鱼(Boleophthalmus boddaerti)大脑氧化应激反应[13]、引起军曹鱼(Rachycentron canadum)鳃、食管和大脑的组织损伤[14]等, 类似的研究还可见亚马逊沼虾(Macrobrachium amazonicum)[15]、凡纳滨对虾(Litopenaeus vannamei)[16]、高体雅罗鱼(Leuciscus idus)[17]、细鳞肥脂鲤(Piaractus mesopo-tamicus)[18]、小锯盖鱼(Centropomus parallelus)[19]等。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    pH在水生动物内稳态中也起到重要作用, 研究表明pH的变化可影响动物体内的酸碱平衡、离子调节以及氨排泄[27]。已有大量研究阐述了pH对氨氮毒性的影响, 介质的pH越高则NH3的存在比例越高, 相对来说毒性也就越大, 可见斑点叉尾鲙(Icta-lurus punctaus)[28]、克林雷氏鲶(Rhamdia quelen)[29]、金体美鳊(Notemigonus crysoleucas)[30]等。

    与pH相比, 温度对离子态氨向非离子态转化的影响作用要小的多, 但也有研究表明温度升高会增强氨氮对水生动物的毒性[31]。Kır等[32]研究发现了26℃时总氨氮(Total ammonia-nitrogen, TAN)对短沟对虾(Penaeus semisulcatus)的安全浓度是14℃的4倍, 非离子氨的安全浓度则为2倍。将温度从15℃升高至25℃后, 氨氮暴露24、48、72以及96h后, 细鳞肥脂鲤对氨氮的敏感性分别上升21.80%、9.55%、31.92%和30.87%[18]。相似的, 随着温度的升高, 大西洋白姑鱼(Argyrosomus regius)对氨氮的耐受性明显地降低[33]

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    在鱼类摄食之后, 大量的蛋白质被分解以维持机体的正常生理活动, 而机体内氨的生成和排泄明显增加[1, 43]。大量的氨生成会导致细胞内碱中毒, 引起一系列的鱼类病理反应[44]。就此来说, 当鱼类暴露于氨氮环境下, 相比于投喂的鱼类, 饥饿似乎更有利于鱼类应对氨氮毒性。但是在对鲫的研究中却得出了相反的结论[40, 45], 他们发现投喂的鲫比饥饿的鲫对氨氮的耐受性更高。鱼类具有大量、可调节的生理生化活动, 其对营养状况具有较强的适应调节性, 如离子平衡、代谢、内分泌等[46]。因此, 食物也会对鱼类应对氨氮毒性起到一定的作用。Wicks和Randall[43]发现虹鳟在摄食之后, 谷氨酰胺合成酶活力明显上升, 其可将血液中过量的氨转化为无毒的谷氨酰胺, 这一现象在肌肉中表现尤为明显。总体来说, 谷氨酰胺合成酶活力的上升可能就是某些鱼类摄食之后具有较强氨氮耐受力的原因。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    由于GDH涉及联合脱氨作用, 因此鱼类机体中谷氨酰胺含量的增加不太可能是因为GDH胺化反应导致谷氨酸含量增加。云斑尖塘鳢(Oxyeleotris marnorata)在摄食之后12h之后肠道GDH含量显著增加[6], 谷氨酸含量的增加可能是鱼类应对摄食后体内氨氮含量显著升高的主要措施之一[9]。鱼类肠道中过量的谷氨酸可能会被转运至肝脏和肌肉中, 促进氨基酸合成用以细胞容积调节[53, 54]。肝脏是谷氨酸代谢的主要场所, 因此肠道通过GDH胺化作用合成谷氨酰胺转运至肝脏中是非常必要的[55]。此外, 过量的游离氨基酸并不会用于合成蛋白且会在一些必要的生理活动中代谢产生氨氮。因此, 肠道和肝脏在鱼类以谷氨酰胺形式进行氨氮解毒的过程中是互相协作的关系。

    在氨氮暴露下, 鱼体内谷氨酰胺累积的报道已见于多种鱼类。云斑尖塘鳢暴露于空气中72h后其肌肉中谷氨酰胺含量增加了3倍, 而肝脏中谷氨酰胺含量却在暴露24h后到达峰值, 说明了肝脏中谷氨酰胺可能随后转移至肌肉中存贮[56]。空气暴露48h后泥鳅(Misgurnus anguillicaudatus)大脑、肌肉以及肝脏中谷氨酰胺含量显著增加, 而GDH活性则明显降低[57]。空气暴露黄鳝72h后, 其体内谷氨酰胺含量达到最大峰值, 其肝脏GS活性在空气暴露144h后明显高于对照组[58]。虹鳟暴露于670和1000 μmol/L NH4Cl溶液24h和96h之后, 相比于空白对照组, 其大脑谷氨酰胺含量升高而谷氨酸含量降低[50]。中华乌塘鳢(Bostrychus sinensis)暴露于含有15 mmol/L的海水中6d之后, 其肠道GS和GDH活性均显著提高[59]。此外, 空气暴露中华乌塘鳢24h内其肌肉中累积谷氨酰胺, 而在48h后则又恢复至正常水平, 说明鱼体内累积的谷氨酰胺可能通过某些同化作用转化为其他的含氮化合物[60]。类似的研究报道还可见于许氏齿弹涂鱼(Periophthalmodon schlosseri)、薄氏大弹涂鱼、海湾豹蟾鱼、尖齿胡鲶及仿刺参(Apostichopus japonicus)等[24, 25, 47, 61]

    在脲生成和排尿素的动物中, 其保持体内较低氨含量最主要的措施即将氨转化为尿素, 再通过尿液排出体外[9]。尿素合成主要在动物肝脏内进行, 这一过程被称为鸟氨酸-尿素循环(Ornithine-urea cycle, OUC)。就鱼类来说, 并非所有的鱼类都可生成脲, 但也有部分鱼类具有功能性的OUC, 具有脲生成功能, 如软骨鱼类中的板鳃亚纲[62]。一些脲生成型鱼类的OUC可凭借肝脏细胞中的氨甲酰磷酸合成酶III将谷氨酰胺转化为低毒的尿素, 尿素分子更小, 易于排出。投喂许氏齿弹涂鱼[7]和细鳞非洲肺鱼(Protopterus dolloi)[8]24h之后, 其尿素合成速度和排泄速率均明显增加, 也有研究发现板鳃类摄食之后尿素合成速度提高, 但其尿素主要用于调控机体的渗透压而非排出体外[20]

    相比于脲生成型鱼类, 仅有少量鱼类具有排泄尿素的功能。海湾豹蟾鱼在拥挤胁迫下可以尿素形式排泄出50%的氮代谢废物[63], 而阿部鲻鳅虎鱼(Mugilogobius abei)在氨氮暴露条件下只能以很少量尿素的形式排泄体内氨[64]。然而, 对鱼类来说, 合成尿素对能量的消耗是巨大的, 研究表明每合成1 mol尿素需要消耗5 mol ATP[9]。此外, 鱼类在水中都是排氨的, 而且一些气呼吸型鱼类在空气暴露条件下也有许多策略来应对体内较高的氨浓度。对一些气呼吸型鱼类的研究中发现, 当其处于较高的体内氨浓度(空气暴露)或者较高的环境氨浓度(氨氮暴露)时, 多数鱼类并不以合成尿素作为主要的氨耐受策略, 如云斑尖塘鳢[56]、泥鳅[57, 65]、黄鳝[58]、大鳞副泥鳅(Paramisgurnus dabryanus)[66]及龟壳攀鲈(Anabas testudineus)[67]等。在已有的报道中, 通过OUC以尿素作为主要氨排泄的鱼类只有格氏雀丽鱼(Alcolapia grahami)一种, 其生活环境pH高达10左右, 在这种情况下氨排泄受到严重的阻碍。因此, 其通过OUC合成尿素的能力很强, 以保证机体免于氨氮毒性[9]。尽管合成尿素并不是多数鱼类应对高浓度氨氮的主要策略, 但其在氨氮环境下仍会增加尿素的合成和累积, 如细鳞非洲肺鱼[68]、石花肺鱼(Protopterus aethiopicus)和非洲肺鱼(Protopterus annectens)[69]等。由于尿素合成是非常耗能的, 而且肺鱼合成尿素也并非为了降解氨氮毒性, 由此可推断其合成尿素是其某些生理活动所需要, 如维持夏眠[9]

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    NH3挥发是气呼吸型鱼类应对氨氮毒性的重要策略之一。由于氨可以NH3的形式存在, 因此理论上鱼类是有可能直接将NH3排放到空气中。鱼类可以直接挥发NH3最初见于大头鳚中, 但NH3挥发只占总氨排泄量的8%左右[94]。但后续的一些研究发现一些鱼类如柯克氏跳弹鳚(Alticus kirki)[95]、花溪鳉[76]以及泥鳅[65]等均可在空气暴露条件下挥发相当大比例的NH3。而且, 温度以及湿度均与NH3挥发量具有正相关关系。泥鳅暴露于空气中会挥发相当大比例的NH3[65], 可能是因为泥鳅后肠壁非常薄, 血管分布密集[96], 这种器官特化非常有利于气体的流动。此外, 空气暴露会导致泥鳅细胞膜流动性的显著增加, 这可能会增加NH3在其鳃细胞膜中的渗透性[97]。这一发现可能意味着鳃与泥鳅的氨气挥发无关。NH3应该是由泥鳅直接挥发至空气中, 而且是通过肠道挥发再经肛门排出[65]。花溪鳉也具有挥发NH3的能力[76], 而且其在空气暴露条件下皮肤表面pH为增加0.4—0.5个单位, 这增加了其皮肤表面NH3的累积[98]。此外, 有研究表明, 花溪鳉在氨氮和空气暴露条件下, Rhcg在其鳃和皮肤的表达量都是非常显著的[99]。因此, Hung等[99]认为Rh蛋白提高了NH3从血液中向皮肤的流动性, 而且可能促进NH3的挥发。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    鱼体内的氨主要由氨基酸代谢产生, 因此鱼类可通过降低氨基酸代谢以减少氨的生成来防止机体内氨浓度过高。鱼类蛋白质水解和合成的平衡会保持其体内游离氨基酸(Free amino acids, FAA)含量的稳态。如果非必需FAA含量在机体内累积可认为是GDH及一些转氨酶催化氨和α-酮酸合成氨基酸的增加, 而必需FAA含量在饥饿鱼类体内累积则可能是由于氨基酸合成的减少[105]。降低体内氨基酸代谢可能是鱼类应对氨氮毒性的有效策略之一, 其可降低鱼类机体内氨含量, 而且并不需要外源能量的参与[5]。但是, 这种情况只能在体内氨浓度已达到一定程度才会出现, 此时鱼类体内氨的累积速度要明显大于排泄速率。

    这一耐氨策略已在一些气呼吸型鱼类中得到证实, 如空气暴露泥鳅一段时间后, 泥鳅体组织中氨累积量会明显超过氨排泄量[57, 65], 因此作者认为泥鳅可通过降低蛋白质水解和氨基酸代谢来适应空气暴露。黄鳝在高环境氨氮中暴露较长一段时间后, 其肝脏和肌肉中总FAA含量会显著增加[106], 而且总FAA的增加主要体现在谷氨酰胺以及几种必需氨基酸含量的增加, 这些结果表明了黄鳝在长时间高氨氮暴露下会降低氨基酸代谢[58]。相似的, 空气暴露中华乌塘鳢24h后, 其氨基酸代谢并未受到抑制, 而在暴露72h后则发现其体内N保留量达到595 μmol, 因此氨基酸代谢降低也是发生在长时间空气暴露后[60]。细鳞非洲肺鱼进入夏眠的前6d及后续的34d, 其机体氨生成速度相较于对照组(0)分别降低了26%和28%[68]。石花肺鱼在夏眠的前12d内氨生成速度仅降低20%, 而在夏眠的第34—46d其体内氨生成速度则降低96%[107]。非洲肺鱼经历12d的夏眠后, 其组织中尿素含量却明显上升(增加约2.7倍)而非氨浓度升高, 但其肝脏OUC相关酶活性却没有明显的变化。当其在空气中夏眠46d后, 其组织中尿素含量较对照组升高至1.4倍、氨生成速度降低56%, 说明了非洲肺鱼主要以合成尿素和降低氨生成来应对空气暴露[108]。类似的研究还可见于许氏齿弹涂鱼和薄氏大弹涂鱼等[10]

    抑制体内蛋白水解和氨基酸代谢可能是鱼类应对氨氮毒性的有效策略之一, 其可降低鱼类机体内氨含量。然而, 在这种情况下也同样抑制了利用氨基酸作为能量源, 这对某些特定鱼类来说并不合适, 如许氏齿弹涂鱼需要在滩涂地上运动[109]。因此, 某些气呼吸型鱼类在抑制体内蛋白水解和氨基酸代谢的同时会部分代谢氨基酸以保证能量供应。谷氨酸和丙酮酸在转氨基作用下会产生α-酮戊二酸, 其在三羧酸循环和电转移链的作用下可被完全氧化为CO2和H2O, 此反应可提供ATP。α-酮戊二酸通过三羧酸循环可被转化为苹果酸, 而苹果酸在苹果酸酶的作用下又可变为丙酮酸, 丙酮酸加上谷氨酸在丙氨酸转氨酶的转氨基作用下可生成丙氨酸。从本质上来说, 这一系列转氨反应生成丙氨酸并未涉及到氨的释放。因此, 部分氨基酸代谢生成丙氨酸虽然不能降低氨的毒性却很好的抑制了体内氨的生成。从这一点来说, 氨基酸部分代谢生成丙氨酸也是鱼类应对氨氮毒性的有效策略之一, 而且这一过程还可提供机体必要的ATP。有许多氨基酸可被部分代谢为丙氨酸且不产生氨, 如1 mol谷氨酸转化为丙氨酸可产生10 mol ATP, 而精氨酸和脯氨酸转化为丙氨酸生成的ATP量则更大。

    泥鳅在空气中暴露12h之后, 其肝脏中丙氨酸含量升高两倍, 说明其在空气中可部分代谢氨基酸生成丙氨酸以抑制体内氨浓度的升高[57]。许氏齿弹涂鱼在滩涂地中排泄氨是很困难的, 氨基酸部分代谢生成丙氨酸对其来说是较为理想的耐氨策略, 且可为其在滩涂地中活动提供必要的能量。Ip等[110]发现许氏齿弹涂鱼在陆地上运动3h后, 其体内糖原含量并没有发生变化, 尽管其肌肉中乳酸含量明显升高, 而且肌肉中氨和丙氨酸含量也明显升高, 这些结果说明氨基酸部分代谢的出现与暴露时间及机体能耗相关。氨基酸部分代谢使得一些鱼类降低了对碳水化合物的依赖性, 节约了贮存在体内的糖原, 使得它们在离水条件下依然能够保持较高的代谢速率。鳢科的月鳢(Channa asiatica)也是一种典型的气呼吸型鱼类, 月鳢在干旱季节会经常面临空气暴露。月鳢在离水条件下无法进行运动、摄食等生活习性, 待其重新回到水中也会经历较长时间的恢复期。月鳢在空气中暴露48h后, 其肌肉中丙氨酸含量从3.7升高至12.6 μmol/g, 这补偿了其体内氨累积与氨排泄差值的70%[111]。这说明月鳢可利用一些氨基酸作为能量源, 与此同时最大程度上降低了其体内的氨浓度。

    一些气呼吸型鱼类的组织和细胞具有很高的氨耐受性, 其组织或者器官中可累积较高浓度的氨, 如泥鳅及黄鳝等[57, 65, 106]。但是氨在其机体内并不是均匀分布的, 一些组织和器官中的氨浓度显著高于其他组织和器官。泥鳅在正常情况下血浆中氨含量为0.81 μmol/L, 而在空气中暴露6h后血浆氨浓度升高至2.46 μmol/L, 空气暴露48h后血浆、肌肉和肝脏中氨含量均显著升高, 分别为5.09、14.8和15.2 μmol/g[57]。然而, 在通常情况下多数鱼类组织和器官中氨含量均<1 μmol/g。空气暴露黄鳝72h后, 其肝脏、大脑和血浆中氨浓度分别升高为对照组的3倍、3.5倍和5倍, 肌肉和肠道氨含量在144h后达到峰值, 分别为6.9和4.5 μmol/g[58]。黄鳝在75 mmol/L的NH4Cl溶液中暴露72h后, 其肌肉、肝脏、肠道、大脑和血浆中也发现有明显的氨累积现象[106]。Tsui等[65]认为泥鳅组织中氨累积有助于其进行NH3挥发。但黄鳝并不能进行NH3挥发, 其组织中氨的累积可能是由于其对环境氨氮极高的耐受性, NH4Cl溶液(pH 7.0, 28℃)对黄鳝48, 72和96h的半致死浓度分别为209.9、198.7和193.2 mmol/L[106]

    与其他组织不同, 鱼类大脑对氨的耐受性可能较低, 当血液中氨浓度升高, 通过血液循环, 氨就可影响到脑组织。增加谷氨酰胺的合成是鱼类常用的应对脑组织氨浓度过高的策略, 但脑组织中谷氨酰胺的累积也会导致一些其他的问题, 因此这一策略也是暂时性的[5]。然而, 鱼类的神经中枢神经系统较高等脊椎动物并不是非常发达, 因此鱼类大脑通常具有较高的氨耐受能力[26]。在对一些鱼类的研究中发现其脑组织高氨耐受性机制与高等脊椎动物是不同, 如海湾豹蟾鱼、许氏齿弹涂鱼、薄氏大弹涂鱼、尖齿胡鲶及黄鳝[24, 25, 47, 49]。Ip等[24]给许氏齿弹涂鱼和薄氏大弹涂鱼注射致死剂量的CH3COONH4和100 μg/g的蛋氨酸亚砜酰亚胺(Methionine sulfoximine, MSO), 而MSO是一种GS抑制剂, 以此来抑制其大脑中谷氨酰胺的累积。结果表明MSO并不能降低许氏齿弹涂鱼和薄氏大弹涂鱼的死亡率。同样的方法和剂量, MSO (100 μg/g)可在27—48 min内将注射了致死剂量CH3COONH4的尖齿胡鲶的死亡率降低20%[25], 他们认为MSO抑制尖齿胡鲶脑组织氨累积可能是通过抑制了脑组织中GDH和丙氨酸转氨酶的活性。类似地, MSO抑制黄鳝脑组织氨累积也不是抑制其GS活性, 而是通过影响GDH活性来实现的[49]。前文已经叙述了NMDA受体对脑组织的神经毒性作用。因此, NMDA受体的拮抗剂可能具有保护脑组织免于氨氮毒性的作用。已有研究的NMDA受体拮抗剂为(5R,10S)-(+)-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-iminehydrogenmaleate (MK801)。然而, 2 μg/g的MK801对注射致死剂量的CH3COONH4许氏齿弹涂鱼和薄氏大弹涂鱼并未起到保护作用[24], 说明了NMDA受体的激活并不是氨氮急性暴露时致死的主要原因。综合这些结果来看, 鱼类大脑具有间接降低脑组织氨含量的功能。

    本文综述了氨氮对鱼类的毒性机理以及鱼类的应对策略, 为相关方向的研究提供了理论资料。鉴于国内外对氨氮毒理的研究仍停留在基础的生理学范畴, 后续的相关研究应该从分子和细胞的角度分析氨氮对水生动物的毒理作用, 这样可更直接、更迅速地反应氨氮对水生动物的毒性及其作用机制。同样地, 对鱼类氨解毒策略的研究也应加强深度和广度, 如探讨每一种耐氨机制的分子调控机制、常规非气呼吸型鱼类是否也具有独特的氨解毒策略及其调控机制等等。这些研究资料的累积将丰富氨氮对水生动物的毒理机制及水生动物的氨解毒机制, 具有重要的科研价值, 也可为水生动物健康养殖提供理论依据。

  • [1]

    Randall D J, Tsui T K N. Ammonia toxicity in fish [J]. Marine Pollution Bulletin, 2002, 45(1—12): 17—23 doi: 10.1016/S0025-326X(02)00227-8

    [2] 周鑫, 董云伟, 王芳, 等. 急性氨氮胁迫对于草鱼sodhsp90基因表达及鳃部结构的影响. 水生生物学报, 2013, 37(2): 321—328 doi: 10.7541/2013.21

    Zhou X, Dong Y-W, Wang F, et al. The effect of high ammonia concentration on gill structure alternation and expression of sod and hsp90 genes in grass carp, Ctenopharyngodon idella [J]. Acta Hydrobiologica Sinica, 2013, 37(2): 321—328
    周鑫, 董云伟, 王芳, 等. 急性氨氮胁迫对于草鱼sodhsp90基因表达及鳃部结构的影响. 水生生物学报, 2013, 37(2): 321—328 doi: 10.7541/2013.21

    [3]

    Zhang L, Xiong D M, Li B, et al. Toxicity of ammonia and nitrite to yellow catfish (Pelteobagrus fulvidraco) [J]. Journal of Applied Ichthyology, 2012, 28(1): 82—86 doi: 10.1111/jai.2012.28.issue-1

    [4]

    Sinha A K, Rasoloniriana R, Dasan A F, et al. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities [J]. Aquatic Toxicology, 2015, 160: 39—56 doi: 10.1016/j.aquatox.2015.01.005

    [5]

    Chew S F, Ip Y K. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes [J]. Journal of Fish Biology, 2014, 84(3): 603—638 doi: 10.1111/jfb.2014.84.issue-3

    [6]

    Tng Y Y M, Wee N L J, Ip Y K, et al. Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker, 1852) [J]. Aquaculture, 2008, 284(1—4): 260—267

    [7]

    Ip Y K, Lim C K, Lee S M L, et al. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri [J]. Journal of Experimental Biology, 2004, 207(17): 3015—3023 doi: 10.1242/jeb.01137

    [8]

    Lim C K, Wong W P, Lee S M L, et al. The ammonotelic African lungfish Protopterus dolloi increases the rate of urea synthesis and becomes ureotelic after feeding [J]. Journal of Comparative Physiology B, 2004, 174(7): 555—564

    [9]

    Ip Y K, Chew S F. Ammonia production, excretion, toxicity, and defense in fish: a review [J]. Frontiers in Physiolgoy, 2010, 1: 134, doi: 10.3389/fphy.2010.00134

    [10]

    Lim C B, Anderson P M, Chew S F, et al. Reduction in the rates of protein and amino acid catabolism to slow down the accumulation of endogenous ammonia: a strategy potentially adopted by mud skipper (Periophthalmodon schlosseri and Boleophthalmus boddaerti) during aerial exposure in constant darkness [J]. Journal of Experimental Biology, 2001, 204(9): 1605—1614

    [11]

    Sinha A K, Matey V, Giblen T, et al. Gill remodeling in three freshwater teleosts in response to high environmental ammonia [J]. Aquatic Toxicology, 2014, 155: 166—180 doi: 10.1016/j.aquatox.2014.06.018

    [12]

    Dong X, Zhang X, Qin J, et al. Acute ammonia toxicity and gill morphological changes of Japanese flounder Paralichthys olivaceus in normal versus supersaturated oxygen [J]. Aquacuture Research, 2013, 44(11): 1752—1759

    [13]

    Ching B, Chew S F, Wong W P, et al. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddaerti (mudskipper) [J]. Aquatic Toxicology, 2009, 95(3): 203—212 doi: 10.1016/j.aquatox.2009.09.004

    [14]

    Rodrigues R V, Schwarz M H, Delbos B, et al. Acute exposure of juvenile cobia Rachycentron canadum to nitrate induces gill, esophageal and brain damage [J]. Aquaculture, 2011, 322/323: 223—226 doi: 10.1016/j.aquaculture.2011.09.040

    [15]

    Pinto M R, Lucena M N, Faleiros R O, et al. Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Aquatic Toxicology, 2016, 170: 13—23 doi: 10.1016/j.aquatox.2015.10.021

    [16]

    de Lourdes Cobo M, Sonnenholzner S, Wille M, et al. Ammonia tolerance of Litopenaeus vannamei (Boone) larvae [J]. Aquaculture Research, 2014, 45(3): 470—475 doi: 10.1111/are.2014.45.issue-3

    [17]

    Gomułka P, Żarski D, Kupren K, et al. Acute ammonia toxicity during early ontogeny of ide Leuciscus idus (Cyprinidae) [J]. Aquaculture International, 2014, 22(1): 225—233 doi: 10.1007/s10499-013-9677-y

    [18]

    Barbieri E, Bondioli A C V. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels [J]. Aquaculture Research, 2015, 46(3): 565—571 doi: 10.1111/are.2015.46.issue-3

    [19]

    Medeiros L S, Pavione P M, Baroni V D, et al. Ammonia excretion in fat snook (Centropomus parallelus Poey, 1860) at different salinities [J]. Aquaculture Research, 2015, 46(12): 3084—3087 doi: 10.1111/are.2015.46.issue-12

    [20]

    Chew S F, Poothodiyil N K, Wong W P, et al. Exposure to brackish water leads to increases in conservation of nitrogen and retention of urea in the Asian freshwater stingray, Himantura signifer, upon feeding [J]. Journal of Experimental Biology, 2006, 209(3): 484—492 doi: 10.1242/jeb.02002

    [21]

    Schimdt W, Wolf G, Grungreiff K, et al. Adenosine influences the high-affinity uptake of transmitter glutamate and aspartate under conditions of hepatic encephalophthy [J]. Metabolic Brain Disease, 1993, 8(2): 73—80 doi: 10.1007/BF00996890

    [22] 徐权能. 泥鳅的耐氨机制. 博士学位论文. 香港城市大学, 中国香港. 2005

    Tsui TKN. Mechanisms of ammonia tolerance in the oriental weatherloach, Misgurnus anguillicaudatus [D]. City University of Hongkong, Hongkong China. 2005
    徐权能. 泥鳅的耐氨机制. 博士学位论文. 香港城市大学, 中国香港. 2005

    [23]

    Miñana M D, Hermenegildo C, Llansola M, et al. Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons [J]. The Journal of Pharmacology and Experimental Therapeutics, 1996, 279(1): 194—199

    [24]

    Ip Y K, Leong M W F, Sim M Y, et al. Chronic and acute ammonia toxicity in mudskipper, Periophthalmodon schlosseri and Boleophthalmus boddaerti: brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801 [J]. Journal of Experimental Biology, 2005, 208(7): 1993—2004

    [25]

    Wee N L J, Tng Y Y M, Cheng H T, et al. Ammonia toxicity and tolerance in the brain of the African sharptooth catfish, Clarias gariepinus [J]. Aquatic Toxicology, 2007, 82(3): 204—213 doi: 10.1016/j.aquatox.2007.02.015

    [26]

    Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste [J]. Physiological Reviews, 2005, 85(1): 97—177 doi: 10.1152/physrev.00050.2003

    [27]

    Wood C M. Toxic response of the gill. In: Schlenk D, Benson W H (eds), Target Organ Toxicity in Marine and Freshwater Teleosts [M]. Volume 1, Organs. Taylor & Francis, London, 2001, 1—89

    [28]

    Sheehan R J, Lewis W M. Influence of pH and ammonia salts on ammonia toxicity and water balance in young channel catfish [J]. Transactions of American Fisheries Society, 1986, 115(6): 891—899 doi: 10.1577/1548-8659(1986)115<891:IOPAAS>2.0.CO;2

    [29]

    dos S. Miron, Moraes B, Becker A G, et al. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae) [J]. Aquaculture, 2008, 277(3—4): 192—196 doi: 10.1016/j.aquaculture.2008.02.023

    [30]

    Sink T D. Influence of pH, salinity, calcium, and ammonia source on acute ammonia toxicity to golden shiners, Notemigonus crysoleucas [J]. Journal of the World Aquaculture Society, 2010, 41(3): 411—420 doi: 10.1111/jwas.2010.41.issue-3

    [31]

    Romano N, Zeng C. Toxic effects of ammonia, nitrite, and nitrate to crustaceans: a review on factors influencing their toxicity, physiological consequences, and coping mechanisms [J]. Reviews in Fisheries Science, 2013, 21(1): 1—21 doi: 10.1080/10641262.2012.753404

    [32]

    Kır M, Kumlu M, Eroldoğan O T. Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles [J]. Aquaculture, 2004, 241(1—4): 479—489 doi: 10.1016/j.aquaculture.2004.05.003

    [33]

    Kır M, Topuz M, Sunar M C, et al. Acute toxicity of ammonia in Meagre (Argyrosomus regius Asso, 1801) at different temperatures [J]. Aquaculture Research, 2015, doi: 10.1111/are.12811

    [34]

    Barbieri E. Acute toxicity of ammonia in white shrimp (Litopenaeus schmitti) (Burkenroad, 1936, Crustacea) at different salinity levels [J]. Aquaculture, 2010, 306(1—4): 329—333

    [35]

    Kır M, Öz O. Effects of salinity on acute toxicity of ammonia and oxygen consumption rates in common prawn, Palaemon serratus (Pennat, 1777) [J]. Journal of the World Aquaculture Society, 2015, 46(1): 76—82 doi: 10.1111/jwas.2015.46.issue-1

    [36]

    Soderberg R W, Meade J W. Effects of sodium and Calcium on acute toxicity of un-ionized ammonia to Atlantic salmon and lake trout [J]. Journal of Applied Aquaculture, 1992, 1(4): 83—92

    [37]

    Diricx M, Sinha A K, Liew H J, et al. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: Additional effects to feeding and exercise [J]. Aquatic Toxicology, 2013, 142/143: 123—137 doi: 10.1016/j.aquatox.2013.08.007

    [38]

    Kieffer J D, Wakefield A M, Litvak M K. Juvenile sturgeon exhibit reduced physiological responses to exercise [J]. Journal of Experimental Biology, 2001, 204(24): 4281—4289

    [39]

    Wicks B J, Joensen R, Tang Q, et al. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout [J]. Aquatic Toxicology, 2002, 59(1—2): 55—69 doi: 10.1016/S0166-445X(01)00236-3

    [40]

    Sinha A K, Liew H J, Diricx M, et al. The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carssius auratus L.) [J]. Aquatic Toxicology, 2012, 109: 33—46 doi: 10.1016/j.aquatox.2011.11.002

    [41]

    Beaumont M W, Butler P J, Taylor E W. Exposure of brown trout, Salmo trutta, to a sub-lethal concentration of copper in soft acidic water: effects upon muscle metabolism and membrane potential [J]. Aquatic Toxicology, 2000, 51(2): 259—272 doi: 10.1016/S0166-445X(00)00109-0

    [42]

    Beaumont M W, Taylor E W, Butler P J. The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water [J]. Journal of Experimental Biology, 2000, 230(14): 2229—2236

    [43]

    Wicks B J, Randall D J. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss [J]. Aquatic Toxicology, 2002, 59(1—2): 71—82 doi: 10.1016/S0166-445X(01)00237-5

    [44]

    Lemarie G, Dosdat A, Coves D, et al. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles [J]. Aquaculture, 2004, 229(1—4): 471—491

    [45]

    Sinha A K, Liew H J, Diricx M, et al. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carssius auratus L.) [J]. Aquatic Toxicology, 2012, 114—115: 153—164

    [46]

    Bucking C, Wood C M. Gastrointestinal processing of Na+, Cl and K+ during digestion: implication for homeostatic balance in freshwater rainbow trout [J]. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2006, 291(6): R1764-R1772 doi: 10.1152/ajpregu.00224.2006

    [47]

    Veauvy C M, McDonald M D, van Audekerke J, et al. Ammonia affects brain nitrogen metabolism but not hydration status in the Gulf toadfish (Opsanus beta) [J]. Aquatic Toxicology, 2005, 74(1): 32—46 doi: 10.1016/j.aquatox.2005.05.003

    [48]

    Wright P A, Steele S L, Hvitema A, et al. Introduction of four glutamine synthetase genes in brain of rainbow trout in response to elevated environmental ammonia [J]. Journal of Experimental Biology, 2007, 210(16): 2905—2911 doi: 10.1242/jeb.003905

    [49]

    Tng Y Y M, Chew S F, Wee N L J, et al. Acute ammonia toxicity and the protective effects of methionine sulfoximine on the swamp eel, Monopterus albus [J]. Journal of Experimental Zoology Part A Ecological Genetics and Physiology, 2009, 311(9): 676—688

    [50]

    Sanderson L A, Wright P A, Robinson J W, et al. Inhibition of glutamine synthetase during ammonia exposure in rainbow trout indicates a high reserve capacity to prevent brain ammonia toxicity [J]. Journal of Experimental Biology, 2010, 213(13): 2343—2353 doi: 10.1242/jeb.039156

    [51]

    Mommsen T P, Walsh P J. Biochemical and environmental perspectives on nitrogen metabolism in fishes [J]. Experientia, 1992, 48(6): 583—593 doi: 10.1007/BF01920243

    [52]

    Anderson P M, Broderius M A, Fong K C, et al. Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichyths sinensis in response to exposure to a high exogenous ammonia concentration [J]. Journal of Experimental Biology, 2002, 205(14): 2053—2065

    [53]

    Chew S F, Tng Y Y M, Wee N L J, et al. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marnorata, exposed to seawater [J]. Comparative Biochemistry and Physiology Part A Molecular & Intergrative Physiology, 2009, 154(3): 360—369

    [54]

    Chew S F, Tng Y Y M, Wee N L J, et al. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater [J]. Journal of Comparative Physiology B, 2010, 180(4): 511—520 doi: 10.1007/s00360-009-0436-3

    [55]

    Campbell J W. " Excretory nitrogen metabolism” In: Prosser C L (Eds.), Environmental and Metabolic Animal Physiology. Comparative Animal Physiology [M]. 4th edn. New York: Wiley-Interscience. 1991, 277—324

    [56]

    Jow L Y, Chew S F, Lim C B, et al. The marble goby Oxyeleotris marnorata activates hepatic glutamine synthetase and detoxifies ammonia to glutamine during air exposure [J]. Journal of Experimental Biology, 1999, 202(3): 237—245

    [57]

    Chew S F, Jin Y, Ip Y K. The loach Misgurnus anguillicaudatus reduces amino acid catabolism and accumulates alanine and glutamine during aerial exposure [J]. Physiological and Biochemical Zoology, 2001, 74(2): 226—237 doi: 10.1086/319663

    [58]

    Tay A S L, Chew S F, Ip Y K. The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during 144 h of aerial exposure [J]. Journal of Experimental Biology, 2003, 206(14): 2473—2486 doi: 10.1242/jeb.00464

    [59]

    Peh W Y X, Chew S F, Ching B Y, et al. Roles of intestinal glutamate dehydrogenase and glutamine synthetase in environmental ammonia detoxification in the euryhaline four-eyed sleeper, Bostrychus sinensis [J]. Aquatic Toxicology, 2010, 98(1): 91—98 doi: 10.1016/j.aquatox.2010.01.018

    [60]

    Ip Y K, Chew S F, Leong I W A, et al. The sleeper Bostrichyths sinensis (Family Eleotridae) stores glutamine and reduces ammonia production during aerial exposure [J]. Journal of Comparative Pysiology B, 2001, 171(5): 357—367 doi: 10.1007/s003600100184

    [61]

    Wang G, Pan L, Ding Y. Defensive strategies in response to environmental ammonia exposure of the sea cucumber Apostichopus japonicus: Glutamine and urea formation [J]. Aquaculture, 2014, 432: 278—285 doi: 10.1016/j.aquaculture.2014.05.006

    [62]

    Steele S L, Yancey P H, Wright P A. The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen metabolism during low-salinity challenge [J]. Physiological and Biochemical Zoology, 2005, 78(2): 216—226 doi: 10.1086/427052

    [63]

    Walsh P J, Danulat E, Mommsen T P. Variation in urea excretion in the gulf toadfish (Opsanus beta) [J]. Marine Biology, 1990, 106(3): 323—328 doi: 10.1007/BF01344308

    [64]

    Iwata K, Kajimura M, Sakamoto T. Functional ureogenesis in the gobiid fish Mugilogobius abei [J]. Journal of Experimental Biology, 2000, 203(24): 3703—3715

    [65]

    Tsui T K N, Randall D J, Chew S F, et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus [J]. Journal of Experimental Biology, 2002, 205(5): 651—659

    [66]

    Zhang Y-L, Zhang H-L, Wang L-Y, et al. Changes of ammonia, urea contents and transaminase activity in the body during aerial exposure and ammonia loading in Chinese loach Paramisgurnus dabryanus [J]. Fish Physiology and Biochemisty, 2016, doi: 10.1007/s10695-016-0317-0

    [67]

    Tay A S L, Loong A M, Hiong K C, et al. Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10 minutes of forced exercise on land [J]. Journal of Experimental Biology, 2006, 209(22): 4475—4489 doi: 10.1242/jeb.02557

    [68]

    Chew S F, Chan N K Y, Tam W L, et al. The African lungfish, Protopterus dolloi, increases the rate of urea synthesis despite a reduction in ammonia production during 40 days of aestivation in a mucus cocoon [J]. Journal of Experimental Biology, 2004, 207(5): 777—786 doi: 10.1242/jeb.00813

    [69]

    Loong A M, Hiong K C, Lee S L M, et al. Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for 6 days [J]. Journal of Experimental Zoology Part A Ecological Genetics and Physiology, 2005, 303(5): 354—365

    [70]

    Ip Y K, Subaidah R M, Liew P C, et al. The African catfish Clarias gariepinus does not detoxify ammonia to urea or amino acids during ammonia loading but is capable of excreting ammonia against an inwardly driven ammonia concentration gradient [J]. Physiological and Biochemical Zoology, 2004, 77(2): 255—266 doi: 10.1086/383500

    [71]

    Chew S F, Hong L N, Wilson J M, et al. Alkaline environmental pH has no effect on the excretion of ammonia in the mudskipper Periophthalmodon schlosseri but inhibits ammonia excretion in the related species Boleophthalmus boddaerti [J]. Physiological and Biochemical Zoology, 2003, 76(2): 204—214 doi: 10.1086/374281

    [72]

    Ip Y K, Randall D J, Kok T K T, et al. The giant mudskipper Periophthalmodon schlosseri facilitates active ${rm{NH}}_4^ + $ excretion by increasing acid excretion and decreasing NH3 permeability in the skin [J]. Journal of Experimental Biology, 2004, 207(5): 787—801 doi: 10.1242/jeb.00788

    [73]

    Matey V, Richards J G, Wang Y, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Grmnocypris przewalskii [J]. J Exp Biol, 2008, 211(7): 1063—1074 doi: 10.1242/jeb.010181

    [74]

    LeBlanc D M, Wood C M, Fudge D S, et al. A fish out of water: gill and skin remodeling promotes osmo-and ionoregulation in the mangrove killifish Kryptolebias marmoratus [J]. Physiological and Biochemical Zoology, 2010, 83(6): 939—949

    [75]

    Brauner C J, Matey V, Wilson J M, et al. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon [J]. Journal of Experimental Biology, 2004, 207(9): 1433—1438 doi: 10.1242/jeb.00887

    [76]

    Frick N T, Wright P A. Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure [J]. Journal of Experimental Biology, 2002, 205(1): 91—100

    [77]

    Chew S F, Sim M Y, Phua Z C, et al. Active ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri (Pallas), during emersion [J]. Journal of Experimental Zoology Part A Ecological Genetics and Physiology, 2007, 307(6): 357—369

    [78]

    Randall D J, Ip Y K, Chew S F, et al. Air breathing and ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri [J]. Physiological and Biochemical Zoology, 2004, 77(5): 783—788 doi: 10.1086/423745

    [79]

    Loong A M, Chew S F, Wong W P, et al. Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na+: K+: 2Cl cotransporter in the gills of the freshwater climbing perch, Anabas testudineus [J]. Journal of Comparative Physiology B, 2012, 182(4): 491—506 doi: 10.1007/s00360-011-0634-7

    [80]

    Zidi-Yahiaoui N, Mouro-Chanteloup I, D’Ambrosio A M, et al. Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells [J]. Biochemical Journal, 2005, 391(1): 33—40 doi: 10.1042/BJ20050657

    [81]

    Mak D O, Dang B, Weiner I D, et al. Characterization of transport by the kidney Rh glycoproteins, RhBG and RhCG [J]. American Journal of Physiology - Renal Physiology, 2006, 290(2): F297-F305 doi: 10.1152/ajprenal.00147.2005

    [82]

    Mouro-Chanteloup I, Cochet S, Chami M, et al. Functional reconstitution into lipsomes of purified human RhCG ammonia channel [J]. PLoS One, 2010, 5, e8921 doi: 10.1371/journal.pone.0008921

    [83]

    Shih T-H, Horng J L, Hwang P-P, et al. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae [J]. American Journal of Physiology - Cell Physiology, 2008, 295(6): C1625-C1632 doi: 10.1152/ajpcell.00255.2008

    [84]

    Kumai Y, Perry S F. Ammonia excretion via Rhcg 1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water [J]. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2011, 301(5): R1517-R1528 doi: 10.1152/ajpregu.00282.2011

    [85]

    Fu C, Wilson J M, Rombough P J, et al. Ions first: Na+ uptake shift from the skin to the gills before O2 uptake in developing rainbow trout, Oncorhynchus mykiss [J]. Proceedings of the Royal Society B Biological Science, 2010, 277(1687): 1553—1560 doi: 10.1098/rspb.2009.1545

    [86]

    Nakhoul N L, Hamm L L. The challenge of determining the role of Rh glycoproteins in transport of NH3 and ${rm{NH}}_4^ + $ . Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 2014, 3(3): 53—61 doi: 10.1002/wmts.2014.3.issue-3

    [87]

    Nakada T, Westhoff C M, Kato A, et al. Ammonia secretion from fish gill depends on a set of Rh glycoprotein [J]. FASEB Journal, 2007, 21(4): 1067—1074 doi: 10.1096/fj.06-6834com

    [88]

    Wright P A, Wood C M. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins [J]. Journal of Experimental Biology, 2009, 212(15): 2303—2312 doi: 10.1242/jeb.023085

    [89]

    Tsui T K N, Hung C Y C, Nawata C M, et al. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/ ${rm{NH}}_4^ + $ exchange complex [J]. Journal of Experimental Biology, 2009, 212(6): 878—892 doi: 10.1242/jeb.021899

    [90]

    Rodela T M, Esbaugh A J, Weihrauch D, et al. Revisiting the effects of crowding and feeding in the gulf toadfish, Opsanus beta: the role of Rhesus glycoproteins in nitrogen metabolism and excretion [J]. Journal of Experimental Biology, 2012, 215(2): 301—313 doi: 10.1242/jeb.061879

    [91]

    Wright P A, Wood C M, Wilson J M. Rh versus pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish [J]. Journal of Experimental Biology, 2014, 217(16): 2855—2865 doi: 10.1242/jeb.098640

    [92]

    Edwards S L, Arnold J M, Blair S D, et al. Ammonia excretion in the Atlantic hagfish (Myxine glutinosa) and responses of an Rhc glycoprotein [J]. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2015, 308(9): R769-R778 doi: 10.1152/ajpregu.00355.2014

    [93]

    Lin L Y, Liao B K, Horng J L, et al. Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells [J]. American Journal of Physiology - Cell Physiology, 2008, 294(5): C1250-C1260 doi: 10.1152/ajpcell.00021.2008

    [94]

    Davenport J, Sayer, M D J. Ammonia and urea excretion in the amphibious teleost Blennius pholis (L.) in sea-water and in air [J]. Comparative Biochemistry and Physiology Part A Physiology, 1986, 84(1): 189—194 doi: 10.1016/0300-9629(86)90062-9

    [95]

    Rozemeijer M J C, Plaut I. Regulation of nitrogen excretion of the amphibious blenniidae Alticus kirki (Guenther, 1868) during emersion and immersion [J]. Comparative Biochemistry and Physiology Part A Physiology, 1993, 104(1): 57—62 doi: 10.1016/0300-9629(93)90008-R

    [96]

    Gonçalves A F, Castro L F C, Pereira-Wilson C, et al. Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurunus anguillicaudatus, an intestinal air-breathing fish [J]? Comparative Biochemistry and Physiology Part D Genomics and Proteomics, 2007, 2(4): 345—355 doi: 10.1016/j.cbd.2007.08.002

    [97]

    Moreira-Silva J, Tsui T K N, Coimbra J, et al. Branchial ammonia excretion in the Asian weatherloach Misgurnus anguillicaudatus [J]. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2010, 151(1): 40—50

    [98]

    Litwiller S L, O’Donnell M J O, Wright P A. Rapid increase in the partial pressure of NH3 on the cutaneous surface of air-exposed mangrove killifish, Rivulus marmortus [J]. Journal of Experimental Biology, 2006, 209(9): 1737—1745 doi: 10.1242/jeb.02197

    [99]

    Hung C Y C, Tsui K N T, Wilson J M, et al. Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air [J]. Journal of Experimental Biology, 2007, 210(14): 2419—2429 doi: 10.1242/jeb.002568

    [100]

    Varley D G, Greenaway P. Nitrogenous excretion in the terrestrial carnivorous crab Geograpsus grayi: site and mechanism of excretion [J]. Journal of Experimental Biology, 1994, 190(1): 179—193

    [101]

    Grosell M. Intestinal anion exchange in marine fish osmoregulation [J]. Journal of Experimental Biology, 2006, 209(15): 2813—2827 doi: 10.1242/jeb.02345

    [102]

    Kurita Y, Nakada T, Kato A, et al. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish [J]. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2008, 294(4): R1402-R1412 doi: 10.1152/ajpregu.00759.2007

    [103]

    Grosell M, Manger E M, Williams C, et al. High rates of ${rm{HCO}}_3^ - $ secretion and Cl absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon [J]? Journal of Experimental Biology, 2009, 212(11): 1684—1696

    [104]

    Wilson J M, Moreira-Silva J, Delgado I L S, et al. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of intestinal air-breathing fish Misgurnus anguillicaudatus [J]. Journal of Experimental Biology, 2013, 216(4): 623—632 doi: 10.1242/jeb.074401

    [105]

    Ip Y K, Chew S F, Wilson J M, et al. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review [J]. Journal of Comparative Physiology B, 2004, 174(7): 565—575

    [106]

    Ip Y K, Tay A S L, Lee K H, et al. Strategies for surviving high concentrations of environmental ammonia in the swamp eel Monopterus albus [J]. Physiological and Biochemical Zoology, 2004, 77(3): 390—405 doi: 10.1086/383510

    [107]

    Ip Y K, Yeo P J, Loong A M, et al. The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon on land [J]. Journal of Experimental Zoology Part A Ecological Genetics and Physiology, 2005, 303(12): 1054—1065

    [108]

    Loong A M, Chng Y R, Chew S F, et al. Molecular characterization and mRNA expression of carbamoyl phosphate synthetase III in the liver of the African lungfish, Protopterus annectens, during aestivation or exposure to ammonia [J]. Journal of Comparative Physiology B, 2012, 182(3): 367—379 doi: 10.1007/s00360-011-0626-7

    [109]

    Kok T W T, Lim C B, Lam T J, et al. The mudskipper Periophthalmodon schlosseri respires more efficiently on land than in water and vice versa for Boleophthalmus boddaerti [J]. Comparative Physiology and Biochemistry, 1998, 280(1): 86—90

    [110]

    Ip Y K, Lim C B, Chew S F, et al. Partial amino acid catabolism leading to the formation of alanine in Periophthalmodon schlosseri (mudskipper): a strategy that facilitates the use of amino acids as the energy source during locomotory activity on land [J]. Journal of Experimental Biology, 2001, 204(9): 1615—1624

    [111]

    Chew S F, Wong M Y, Tam W L, et al. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism [J]. Journal of Experimental Biology, 2003, 206(4): 693—704 doi: 10.1242/jeb.00140

  • 期刊类型引用(27)

    1. 沈雷,高建操,聂志娟,郑兆伟,胡佳雯,邵乃麟,孙毅,徐钢春. 普通小球藻对水体NH_4~+-N、NO_2~--N去除效果及NO_2~--N的同化途径. 水产学报. 2024(02): 94-107 . 百度学术
    2. 吴昊,蒋高中. 江苏省水产品品牌建设发展路径研究. 安徽农业科学. 2023(11): 236-238+242 . 百度学术
    3. 刘祝萍,郑尧,刘少贞,廖河庭,王宁,孟顺龙,陈家长,安树伟,顾玲玲. 三省藕虾养殖模式水环境质量监测研究及成本核算. 中国农学通报. 2023(23): 127-137 . 百度学术
    4. 李哲,周珊珊,王好学,王嘉浩,陈璐,徐开达. 运输振荡对条石鲷幼鱼生理应激和水体总氨氮含量的影响. 水产科技情报. 2023(05): 327-332 . 百度学术
    5. 何雅琪,任宗明. 基于在线生物监测系统的氨氮胁迫下斑马鱼行为响应. 水生生物学报. 2022(06): 903-913 . 本站查看
    6. 仇宇俊,汪小旵,李天沛,葛朋彪. 鱼菜共生环境中多参数监测系统设计与试验. 中国农机化学报. 2022(12): 67-74 . 百度学术
    7. 赵巧娥. 淡水精养池塘氮收支及氮管理措施. 农业工程. 2022(S1): 33-40 . 百度学术
    8. 张云龙,商泽昊,王光毅,米笛,尤昆. 氨和空气暴露对大鳞副泥鳅肝脏抗氧化能力的影响. 中国水产科学. 2021(02): 176-185 . 百度学术
    9. 何彩庆,陈云嫩,殷若愚,刘晨,邱廷省. 离子交换/吸附法净化氨氮废水的研究进展. 应用化工. 2021(02): 481-485 . 百度学术
    10. 秦璐,陈曦,裘丽萍,范立民,宋超,郑尧,孟顺龙,陈家长. 小球藻对罗非鱼养殖水体水质及细菌群落结构的影响. 中国农学通报. 2021(12): 112-120 . 百度学术
    11. 袁泉,吕巍巍,黄伟伟,孙小淋,吕卫光,周文宗. 稻-鳝综合种养氮肥减量效应研究. 江西农业学报. 2021(06): 43-48 . 百度学术
    12. 熊小琴,王岚,史庆超,刘浩,胡增谭,文业武,胡鹏. 氨氮对鱼类的毒性效应研究进展. 贵州农业科学. 2021(07): 81-87 . 百度学术
    13. 陈亚楠,李海蓝,鉏晓艳,廖涛,李美锦,黄佳珺,熊光权. 暂养环境因子对斑点叉尾鮰肌肉理化性质与质构特性的影响. 肉类研究. 2021(08): 9-15 . 百度学术
    14. 曹杰,谢晶. 间氨基苯甲酸乙酯甲磺酸盐在大菱鲆模拟保活运输中的作用效果. 食品科学. 2021(23): 246-253 . 百度学术
    15. 李雪,刘述凤,鄢雨朦,张润洁,王天杰,付保荣. 复合芽孢杆菌对鲫鱼养殖水体水质及细菌群落结构的影响. 生态与农村环境学报. 2020(04): 522-530 . 百度学术
    16. 张赛赛,宋晓阳,尚宏鑫,孙阳,周竹君,杨婷婷,田斌,宋珞珈,陈文博,刘彤. 氨氮和亚硝酸盐对单环刺螠幼体的急性毒性实验. 河北渔业. 2020(07): 8-12+29 . 百度学术
    17. 郑洪武,杨斯琪,孙颖,朱爱意. 急性氨氮胁迫对大口黑鲈幼鱼ACP、CAT和MDA的影响. 浙江海洋大学学报(自然科学版). 2020(01): 27-33 . 百度学术
    18. 陈启亮,段雨池,马跃岗,但言,练小龙,李英文. 氨氮胁迫对斑马鱼繁殖行为的影响. 重庆师范大学学报(自然科学版). 2020(06): 39-44 . 百度学术
    19. 牛春格,杨程,申屠琰,郑晓静,王志铮. 氨氮急性攻毒对水产经济动物棘胸蛙(Paa spinosa)蝌蚪死亡率、排氨率、耗氧率及窒息点的影响. 海洋与湖沼. 2019(01): 188-196 . 百度学术
    20. 陈红菊,王慧,孔维祎,许高朋,王晓云,赵燕,季相山. 氨氮降解菌的筛选、鉴定与复合菌水质调控效果研究. 水生生物学报. 2019(04): 875-883 . 本站查看
    21. 张云龙,王光毅,金慧,董昭然,张子涵,谢云轶. 氨基酸代谢调控在大鳞副泥鳅应对氨暴露中的作用. 水生生物学报. 2019(05): 1013-1020 . 本站查看
    22. 崔康成,刘伟,高文燕,李培伦,王继隆,唐富江. 大麻哈鱼产卵场适宜性指数构建及权重分析. 生态学杂志. 2019(12): 3762-3770 . 百度学术
    23. 杨晨,孙建,钟馨. 投饲量对全封闭循环水养殖虹鳟幼鱼水质影响的现场试验. 水产学杂志. 2019(06): 6-10 . 百度学术
    24. 丁淑荃,陈范,马欢,谢云轶,毛颖睿,王光毅,金慧,董昭然,张云龙. 氨和空气暴露对大鳞副泥鳅血浆皮质醇、乳酸及血糖含量的影响. 淡水渔业. 2019(06): 15-19 . 百度学术
    25. 张云龙,袁娟,张子涵,欧阳霞,姚晓丽,董昭然,鲍传和. 肥水和清水下塘时泥鳅鱼苗的生长和存活. 水产科学. 2018(04): 448-455 . 百度学术
    26. 张云龙,贺亚蒙,袁娟,张子涵,丁淑荃,杨启超,张志强,鲍传和,万全,沈志刚. 运输过程中水质和鱼类生理指标的变化及运输控制策略. 水生生物学报. 2018(02): 439-450 . 本站查看
    27. 高士林,白音包力皋,许凤冉,刘丰,邓欢欢,商栩. 楠溪江干流香鱼栖息地水生态调查分析. 中国水利水电科学研究院学报. 2018(03): 233-240 . 百度学术

    其他类型引用(28)

计量
  • 文章访问数:  2685
  • HTML全文浏览量:  480
  • PDF下载量:  67
  • 被引次数: 55
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2017-01-24
  • 发布日期:  2017-08-31

目录

/

返回文章
返回