三疣梭子蟹Na+/H+-exchanger基因克隆鉴定及在盐度胁迫下的表达分析
NA+/H+-EXCHANGER IN SWIMMING CRAB (PORTUNUS TRITUBERCULATUS): CLONING, CHARACTERIZATION AND MRNA EXPRESSION UNDER SALINITY STRESS
-
摘要: 为研究Na+/H+-exchanger基因在三疣梭子蟹(Portunus trituberculatus)盐度胁迫过程中的功能作用,克隆了三疣梭子蟹Na+/H+-exchanger基因并进行表达分析。结果显示,Na+/H+-exchanger基因(GenBank:KU519329)全长4233 bp,5和3非编码区(UTR)长分别为519和753 bp,开放阅读框(ORF)长2961 bp。编码986个氨基酸,预测蛋白质分子量和等电点分别为110.8 kD和7.42,具有信号肽和典型的Na+/H+-exchanger蛋白结构域,含12个跨膜螺旋;三疣梭子蟹Na+/H+-exchanger基因与普通滨蟹(Carcinus maenas)同源性最高,达到87.2%,系统进化分析也显示该序列与普通滨蟹聚为一支;表达分析显示,三疣梭子蟹Na+/H+-exchanger基因在鳃中表达量最高;在低盐(盐度5、10和20)胁迫过程中,Na+/H+-exchanger基因在0-12h上调表达明显,在24-168h间表达量呈下降趋势;在高盐(盐度50)胁迫初期(0-12h),该基因表达量相对稳定,之后(24-168h)显著下调表达。研究表明低盐显著诱导Na+/H+-exchanger基因的高表达,推测三疣梭子蟹Na+/H+-exchanger基因在低盐环境下发挥重要的渗透调节功能。
-
关键词:
- 三疣梭子蟹 /
- Na+/H+-exchanger /
- 基因克隆 /
- 盐度胁迫 /
- 表达分析
Abstract: Na+/H+-exchanger is a membrane-associated enzyme responsible for the active transport of Na+ and H+ ions across cell membranes and generating chemical and electrical gradients. It plays an important role in salinity adaptation process of aquatic crustacean. The swimming crab (Portunus trituberculatus) distributes widely in the coastal waters of Japan, Korean and China, which is a commercially important marine crab in China. Growth, development and immunity of the crab are significantly affected by salinity variation. In order to investigate the function of Na+/H+-exchanger in P. trituberculatus under salinity stress, Na+/H+-exchanger cDNA (GenBank:KU519329) was cloned from gill tissue of P. trituberculatus by RACE (rapid-amplification of cDNA ends). The full-length of Na+/H+-exchanger cDNA was 4 233 bp (base pairs) including a 519 bp 5'-untranslated region (UTR), a 2961 bp ORF (open reading frame) and a 753 bp 3'-UTR. The ORF encoded 986 amino acids with calculated molecular weight 110.8 kD and theoretical isoelectric point 7.42. Comparison with homologous proteins showed that the deduced Na+/H+-exchanger sequence has the highest sequence identity to Carcinus maenas (87.2%), and the two sequences were clustered into one group by phylogenetic analysis. Typical domains including one signal peptide, one Na+/H+-exchanger domain and twelve transmembrane alpha helixes were found in amino acid sequence of Na+/H+-exchanger. Results of RT-qPCR showed that P. trituberculatus Na+/H+-exchanger was the highest expressed in gill. During salinity stress, the expression of Na+/H+-exchanger of gill in low salinity groups (5, 10 and 20) increased significantly during 0-12h. Subsequently, the expression was down-regulated during 24-168h. The expression of Na+/H+-exchanger in gill in high salinity group (50) was almost no change compared to control group during 0-12h, and the expression level significantly decreased compared with the control group during 24-168h. Low salinity significantly induced the expression of Na+/H+-exchanger gene, suggesting that Na+/H+-exchanger of P. trituberculatus plays a vital role mainly in low salt conditions in the process of salinity adaptation.-
Keywords:
- Portunus trituberculatus /
- Na+/H+-exchanger /
- Gene cloning /
- Salinity stress /
- Expression analysis
-
-
[1] Sun Y M, Song Z L, Yan R S, et al. Preliminary study on the growth of Portunus trituberculatus[J]. Acta Ecologica Sinica, 1984, 4(1):57-64[孙颖民, 宋志乐, 严瑞深, 等. 三疣梭子蟹生长的初步研究. 生态学报, 1984, 4(1):57-64]
[2] Li J, Liu P, Gao B Q, et al. The new variety of Portunus trituberculatus Huangxuan No.1[J]. Progress in Fishe-ry Sciences, 2013, 34(5):51-57[李健, 刘萍, 高保全, 等. 三疣梭子蟹新品种黄选1号的选育. 渔业科学进展, 2013, 34(5):51-57]
[3] Yu J H, Pan L Q. Prokaryotic expression of C-type lectin like-domain protein gene of Portunus tritubrculatus and activity analysis of recombinant protein[J]. Progress in Fishery Sciences, 2013, 34(5):58-63[于金红, 潘鲁青. 三疣梭子蟹C-型凝集素的原核表达和活性检测. 渔业科学进展, 2013, 34(5):58-63]
[4] Sui Y N, Gao B Q, Liu P, et al. The tolerance to and optimal salinity for growth in swimming crab Portunus trituberculatus Huangxuan No. 1[J]. Journal of Da-lian Ocean University, 2012, 27(5):398-401[隋延鸣, 高保全, 刘萍, 等. 三疣梭子蟹黄选1号盐度耐受性及适宜生长盐度分析. 大连海洋大学学报, 2012, 27(5):398-401]
[5] Wang C, Jiang L X, Wang R J, et al. Effect of abrupt and gradual changes in salinity on development and feeding in juvenile swimming crab (Portunus trituberculatus)[J]. Fisheries Science, 2010, 29(9):510-514[王冲, 姜令绪, 王仁杰, 等. 盐度骤变和渐变对三疣梭子蟹幼蟹发育和摄食的影响. 水产科学, 2010, 29(9):510-514]
[6] Zhou S L, Jiang N C, Lu J P, et al. Progress of the study on osmotic regulation in crustacean Ⅰ. The gill's structure and function and its' concerned factors[J]. Donghai Marine Science, 2001, 19(1):44-51[周双林, 姜乃澄, 卢建平, 等. 甲壳动物渗透压调节的研究进展Ⅰ. 鳃的结构与功能及其影响因子. 东海海洋, 2001, 19(1):44-51]
[7] Pqueux A. Osmotic regulation in crustaceans[J]. Jour-nal of Crustacean Biology, 1995, 15(1):51-60
[8] Zhao L, Long X W, Wu X G, et al. Effects of water sali-nity on osmoregulation and physiological metabolism of adult male Chinese mitten crab Eriocheir sinensis[J]. Acta Hydrobiologica Sinica, 2016, 40(1):27-34[赵磊, 龙晓文, 吴旭干, 等. 水体盐度对中华绒螯蟹成体雄蟹渗透压调节和生理代谢的影响. 水生生物学报, 2016, 40(1):27-34]
[9] Morris S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans[J]. The Journal of Experimental Biology, 2001, 204(Pt5):979-989
[10] Mcnamara J C, Faria S C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea:A review[J]. Journal of Comparative Physiology B, 2012, 182(8):997-1014
[11] Freire C A, Onken H, McNamara J C. A structure-function analysis of ion transport in crustacean gills and excretory organs[J]. Comparative Biochemistry and Physio-logy, A:Comparative Physiology, 2008, 151(3):272-304
[12] Onken H, Riestenpatt S. NaCl absorption across split gill lamellae of hyperregulating crabs:Transport mechanisms and their regulation[J]. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology, 1998, 119(119):883-893
[13] Kirschner L B. The mechanism of sodium chloride uptake in hyperregulating aquatic animals[J]. Journal of Experimental Biology, 2004, 207(9):1439-1452
[14] Shetlar R E, Towle D W. Electrogenic sodium-proton exchange in membrane vesicles from crab (Carcinus mae-nas) gill[J]. American Journal of Physiology, 1989, 257(4Pt2):R924-R931
[15] Burnett L E, Towle D W. Sodium ion uptake by perfused gills of the blue crab Callinectes sapidus:effects of oua-bain and amiloride[J]. Journal of Experimental Biology, 1990, 149(1):293-305
[16] Lucu ?edomil. Ion transport in gill epithelium of aquatic Crustacea[J]. Journal of Experimental Zoology, 1993, 265(4):378-386
[17] Towle D W, Rushton M E, Heidysch D, et al. Sodium/proton antiporter in the euryhaline crab Carcinus maenas:molecular cloning, expression and tissue distribution[J]. Journal of Experimental Biology, 1997, 200(Pt6):1003-1014
[18] Ma J W, L J J, Liu P, et al. Effects of abrupt salinity stress on serum osmolarity and ion concentration of Huangxuan No.1 Portunus trituberculatus[J]. Progress in Fishery Sciences, 2016, 37(1):58-62[马金武, 吕建建, 刘萍, 等. 急性盐度胁迫对三疣梭子蟹(Portunus trituberculatus)黄选1号血清渗透压及离子含量的影响. 渔业科学进展, 2016, 37(1):58-62]
[19] L J J, Liu P, Wang Y, et al. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation[J]. PloS One, 2013, 8(12):1-15
[20] Xu Q H, Liu Y. Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress[J]. Marine Biology, 2011, 158(10):2161-2172
[21] Bianchini L Poussgur J. Molecular structure and regulation of vertebrate Na+/H+ exchangers[J]. Journal of Experimental Biology, 1994, 196(6):337-345
[22] Ali M Y, Pavasovic A, Amin S, et al. Comparative analysis of gill transcriptomes of two freshwater crayfish, Cherax cainii and C. destructor[J]. Marine Genomics, 2015, 22:11-13
[23] Ali M Y, Pavasovic A, Mather P B, et al. Analysis, cha-racterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus[J]. Gene, 2015, 564(2):176-187
-
期刊类型引用(8)
1. 刁乐,张凤英,宋炜,马春艳,王伟,谌微,马凌波,赵明,乔振国,蒋科技. 拟穴青蟹Na~+/H~+-exchanger基因克隆及其在盐度胁迫下的表达分析. 海洋渔业. 2020(02): 214-224 . 百度学术
2. 张金生,刘志峰,马爱军,崔文晓,曲江波. 大菱鲆水通道蛋白(AQP1、AQP3)以及离子通道蛋白(CFTR、NHE1)对低盐胁迫的响应. 渔业科学进展. 2020(04): 41-49 . 百度学术
3. 环朋朋,吕建建,孙东方,高保全,刘萍. 三疣梭子蟹PtDNMT1基因的克隆及其在低盐适应中的表达分析. 渔业科学进展. 2019(01): 92-100 . 百度学术
4. 赵姣姣,陶震,周素明,金珊,王国良,周岐存. 三疣梭子蟹NF-κB家族基因Relish和Dorsal的克隆及表达特征. 水生生物学报. 2019(02): 298-304 . 本站查看
5. 孙东方,吕建建,环朋朋,高保全,刘萍. 低盐胁迫下三疣梭子蟹蝗抗利尿肽基因的表达. 中国水产科学. 2018(05): 967-975 . 百度学术
6. 李政道,李健,葛倩倩,王佳佳,何玉英,王培春. 中国明对虾NHE3基因克隆及其在pH胁迫下的表达. 中国水产科学. 2018(05): 958-966 . 百度学术
7. 蒋亚男,田燚,李晓雨,商艳鹏,常亚青. 盐度应激下刺参4个转运相关基因的适应表达研究. 大连海洋大学学报. 2018(06): 696-702 . 百度学术
8. 彭智文,黄姝,岳武成,陈晓雯,王军,王成辉. 不同盐度下中华绒螯蟹胁迫相关基因的表达差异. 福建农林大学学报(自然科学版). 2017(05): 552-556 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1337
- HTML全文浏览量: 0
- PDF下载量: 115
- 被引次数: 19