镇海水库拟柱孢藻的分离鉴定和氮磷对其生长的影响

THE EFFECTS OF PHOSPHORUS AND NITROGEN ON THE GROWTH OF CYLINDROSPERMOPSIS RACIBORSKII N8 ISOLATED FROM THE ZHENHAI RESERVOIR

  • 摘要: 以分离自广东省镇海水库的拟柱孢藻N8为对象, 探究其在不同磷浓度及氮磷浓度组合下的生长情况。结果表明, 拟柱孢藻N8对磷的适应范围很宽, 在0.025.12 mg/L磷浓度下均能生长, 最适生长磷浓度范围为0.165.12 mg/L, 磷浓度的升高能显著延长拟柱孢藻的对数生长期和提高生物量。动力学分析表明, 拟柱孢藻N8有较低的KSP值, 对磷元素的亲和性较高, 在磷营养贫乏的环境下更容易形成优势。在氮磷组合实验中, 低氮(0.5 mg/L)显著抑制拟柱孢藻的生长, 且这种生长抑制不受磷浓度的影响; 而在低磷(0.04 mg/L)条件下, 水体中氮浓度的增加会显著促进拟柱孢藻的生长, 拟柱孢藻在高氮中磷和高氮高磷下的生长显著优于其他氮磷组合条件。研究表明, 广东省水库拟柱孢藻的生长受磷的限制较弱, 氮是其生长的决定因子。

     

    Abstract: In this study we examined the effects of nitrate and phosphate on the growth of Cylindrospermopsis raciborskii N8 that was isolated from the Zhenhai Reservoir in Guangdong Province. We used a crossed factorial design for three phosphorus levels and three nitrogen levels, and thus generated nine different growth conditions for C. raciborskii. Our results showed that C. raciborskii could adapt to a wide range of phosphorus concentrations (from 0.02 mg/mL to 5.12 mg/mL) and the optimal concentrations for the growth was between 0.16 mg/mL and 5.12 mg/mL. The exponential stage and biomass of C. raciborskii could be significantly enhanced by the increase in the phosphorus level. The kinetic analysis revealed a low KSP value of C. raciborskii N8. This suggested that C. raciborskii N8 could have high affinity for phosphorus and readily become the dominant species in phosphorus-lacking conditions. The results of the nitrogen and phosphorus orthogonal experiments demonstrated that when the nitrogen level was low (0.5 mg/mL), the growth of C. raciborskii N8 was markedly inhibited regardless of the phosphorus level. Moreover, at low phosphorus concentration (0.04 mg/mL) the proliferation of C. raciborskii N8 could be boosted by the increase in nitrogen concentration. It was also found that the growth of C. raciborskii N8 could be significantly improved by HNMP and HNHP treatment. The highlights of our findings were that C. raciborskii in Guangdong reservoirs was highly tolerant to low phosphorus conditions, and nitrogen could be a key factor in its growth.

     

/

返回文章
返回