抑制Ligase4或Xrcc6活性增强斑马鱼原始生殖细胞中DNA同源重组的效率

魏志强, 熊凤, 何牡丹, 王厚鹏, 朱作言, 孙永华

魏志强, 熊凤, 何牡丹, 王厚鹏, 朱作言, 孙永华. 抑制Ligase4或Xrcc6活性增强斑马鱼原始生殖细胞中DNA同源重组的效率[J]. 水生生物学报, 2015, 39(2): 339-348. DOI: 10.7541/2015.45
引用本文: 魏志强, 熊凤, 何牡丹, 王厚鹏, 朱作言, 孙永华. 抑制Ligase4或Xrcc6活性增强斑马鱼原始生殖细胞中DNA同源重组的效率[J]. 水生生物学报, 2015, 39(2): 339-348. DOI: 10.7541/2015.45
Wei Zhi-Qiang, Xiong Feng, He Mu-Dan, Wang Hou-Peng, Zhu Zuo-Yan, Sun Yong-Hua. SUPPRESSION OF LIGASE4 OR XRCC6 ACTIVITIES ENHANCES THE DNA HOMOLOGOUS RECOMBINATION EFFICIENCY IN ZEBRAFISH PRIMORDIAL GERM CELLS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(2): 339-348. DOI: 10.7541/2015.45
Citation: Wei Zhi-Qiang, Xiong Feng, He Mu-Dan, Wang Hou-Peng, Zhu Zuo-Yan, Sun Yong-Hua. SUPPRESSION OF LIGASE4 OR XRCC6 ACTIVITIES ENHANCES THE DNA HOMOLOGOUS RECOMBINATION EFFICIENCY IN ZEBRAFISH PRIMORDIAL GERM CELLS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(2): 339-348. DOI: 10.7541/2015.45

抑制Ligase4或Xrcc6活性增强斑马鱼原始生殖细胞中DNA同源重组的效率

基金项目: 

The National Basic Research Program of China (grant numbers 2010CB126306 2012CB944504)

the National Science Fund for Excellent Young Scholars of NSFC (grant number 31222052)

the FEBL grant 2011FBZ23

SUPPRESSION OF LIGASE4 OR XRCC6 ACTIVITIES ENHANCES THE DNA HOMOLOGOUS RECOMBINATION EFFICIENCY IN ZEBRAFISH PRIMORDIAL GERM CELLS

  • 摘要: 利用斑马鱼作为体内模型, 研究旨在提高斑马鱼原始生殖细胞(Primordial germ cells, PGCs)中同源重组(Homologous recombination, HR)的效率。首先, 将UAS:mRFP-nos1载体显微注射到Tg (kop:KalTA4) 转基因胚胎中标记转基因PGCs, 结果表明筛选PGCs特异表达mRFP的胚胎能够相对提高转基因的生殖系传递效率。随后建立了PGCs中HR效率的评估体系, 并且证明抑制DNA ligase IV(Lig4)和Xrcc6(曾用名Ku70)的活性不但在全胚胎水平, 而且在PGCs水平都能够显著提高HR的效率。研究表明Tg (kop:KalTA4) 转基因品系是开展HR介导的基因打靶的一个有效平台。
    Abstract: Primordial germ cells (PGCs) give rise to gametes which transmit the genetic information to next generation, therefore PGCs provide us an ideal cell type for genetic manipulation. Homologous recombination (HR) is the most efficient technique to create designed genetic modifications, however, its efficiency is rather low in vertebrates. In this study, by using zebrafish as an in vivo model, we aimed to enhance the efficiency of HR in zebrafish PGCs. First, we injected UAS:mRFP-nos1 construct into Tg (kop:KalTA4) embryos to label the transgenic PGCs, and we showed that screening of PGCs-specific mRFP expression led to relatively high-efficient germline transmission of transgene. Then we established an in vivo assay to evaluate the HR frequency in PGCs. We further revealed that suppression of the activities of DNA ligase IV (Lig4) and Xrcc6 (previously known as Ku70) could significantly increase the HR efficiency, not only at whole embryo level but also in PGCs. We proposed that the Tg(kop:KalTA4) line could be used as an effective platform for HR-mediated gene targeting.
  • [1]

    Langenau D M, Feng H, Berghmans S, et al. Cre/lox- regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(17): 60686073

    [2]

    Xiong F, Wei Z Q, Zhu Z Y, et al. Targeted Expression in Zebrafish Primordial Germ Cells by Cre/loxP and Gal4/UAS Systems [J]. Marine Biotechnology (NY), 2013, 15(5): 526539

    [3]

    Reid L H, Shesely E G, Kim H S, et al. Cotransformation and gene targeting in mouse embryonic stem cells [J]. Molecular Cell Biology, 1991, 11(5): 27692777

    [4]

    Capecchi M R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century [J]. Nature Reviews Genetics, 2005, 6(6): 507512

    [5]

    Glaser S, Anastassiadis K, Stewart A F. Current issues in mouse genome engineering [J]. Nature Genetics, 2005, 37(11): 11871193

    [6]

    Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases [J]. Trends in Genetics, 1996, 12(6): 224228

    [7]

    Porteus M. Using homologous recombination to manipulate the genome of human somatic cells [J]. Biotechnology Genetic Engineering Reviews, 2007, 24: 195212

    [8]

    Beumer K J, Trautman J K, Bozas A, et al. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 1982119826

    [9]

    Meyer M, De Angelis M H, Wurst W, et al. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 1502215026

    [10]

    Cui X, Ji D, Fisher D A, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases [J]. Nature Biotechnology, 2011, 29(1): 6467

    [11]

    Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish [J]. Nature Methods, 2013, 10(4): 329360

    [12]

    Sonoda E, Hochegger H, Saberi A, et al. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair [J]. DNA Repair (Amst), 2006, 5(910): 10211029

    [13]

    Liang F, Han M, Romanienko P J, et al. Homology-directed repair is a major double-strand break repair pathway in mammalian cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(9): 51725177

    [14]

    Liu J, Gong L, Chang C, et al. Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish [J]. Journal of Genetics and Genomics, 2012, 39(9): 489502

    [15]

    Hiom K. Coping with DNA double strand breaks [J]. DNA Repair (Amst), 2010, 9(12): 12561263

    [16]

    O'driscoll M, Jeggo P A. The role of double-strand break repair - insights from human genetics [J]. Nature Reviews Genetics, 2006, 7(1): 4554

    [17]

    Ninomiya Y, Suzuki K, Ishii C, et al. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33): 1224812253

    [18]

    Verbeke J, Beopoulos A, Nicaud J M. Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains [J]. Biotechnology Letters, 2012, 35(4): 571576

    [19]

    Kretzschmar A, Otto C, Holz M, et al. Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining [J]. Current Genetics, 2013, 59(12): 6372

    [20]

    Abdel-Banat B M, Nonklang S, Hoshida H, et al. Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus [J]. Yeast, 2010, 27(1): 2939

    [21]

    Barnes D E, Stamp G, Rosewell I, et al. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice [J]. Current Biology, 1998, 8(25): 13951398

    [22]

    Guirouilh-Barbat J, Huck S, Bertrand P, et al. Impact of the KU80 Pathway on NHEJ-Induced Genome Rearrangements in Mammalian Cells [J]. Molecular Cell, 2004, 14(5): 611623

    [23]

    Nishizawa-Yokoi A, Nonaka S, Saika H, et al. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice [J]. New Phytologist, 2012, 196(4): 10481059

    [24]

    Pellegrini L, Yu D S, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex [J]. Nature, 2002, 420(6913): 287293

    [25]

    Kim P M, Allen C, Wagener B M, et al. Overexpression of human RAD51 and RAD52 reduces double-strand break- induced homologous recombination in mammalian cells [J]. Nucleic Acids Research, 2001, 29(21): 43524360

    [26]

    Vispe S, Cazaux C, Lesca C, et al. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation [J]. Nucleic Acids Research, 1998, 26(12): 28592864

    [27]

    Lieschke G J, Currie P D. Animal models of human disease: zebrafish swim into view [J]. Nature Reviews Genetics, 2007, 8(5): 353367

    [28]

    Yang M Y, Wang H P, Zhu Z Y, et al. Cloning, identification and expression analysis of Ca15b, a novel gene specifically expressed in primordial germ cells of zebrafish [J]. Acta Hydrobiologia Sinica, 2014, 38(1): 142149 [杨明宇, 王厚鹏, 朱作言, 等. 斑马鱼ca15b的克隆及在原始生殖细胞中的特异表达. 水生生物学报, 2014, 38(1): 142149]

    [29]

    Li G H, Cui Z B, Zhu Z Y, et al. Introduction of foreign gene carried by sperms [J]. Acta Hydrobiologia Sinica, 1996, 20(3): 242247 [李国华, 崔宗斌, 朱作言, 等. 鱼类精子携带的外源基因导入. 水生生物学报, 1996, 20(3): 242247]

    [30]

    Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253310

    [31]

    Westerfield M. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio) [M]. Inst of Neuro Science, 1995, 128

    [32]

    Bontems F, Stein A, Marlow F, et al. Bucky ball organizes germ plasm assembly in zebrafish [J]. Current Biology, 2009, 19(5): 414422

    [33]

    Amsterdam A, Lin S, Hopkins N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos [J]. Developmental Biology, 1995, 171(1): 123129

    [34]

    Wu P Y, Frit P, Meesala S, et al. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4 [J]. Molecular And Cellular Biology, 2009, 29(11): 31633172

    [35]

    He F, Li L, Kim D, et al. Adenovirus-mediated expression of a dominant negative Ku70 fragment radiosensitizes human tumor cells under aerobic and hypoxic conditions [J]. Cancer Research, 2007, 67(2): 634642

    [36]

    Blaser H, Eisenbeiss S, Neumann M, et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish [J]. Journal of Cell Science, 2005, 118(Pt 17): 40274038

    [37]

    Fan L, Moon J, Wong T T, et al. Zebrafish primordial germ cell cultures derived from vasa: RFP transgenic embryos [J]. Stem Cells and Development, 2008, 17(3): 585597

    [38]

    Knaut H, Steinbeisser H, Schwarz H, et al. An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish [J]. Current Biology, 2002, 12(6): 454466

    [39]

    Krovel A V, Olsen L C. Expression of a vas: EGFP transgene in primordial germ cells of the zebrafish [J]. Mechanisms of Development, 2002, 116(1-2): 141150

    [40]

    Barnes D E, Stamp G, Rosewell I, et al. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice [J]. Current Biology, 1998, 8(25): 13951398

    [41]

    Kuhfittig-Kulle S, Feldmann E, Odersky A, et al. The mutagenic potential of non-homologous end joining in the absence of the NHEJ core factors Ku70/80, DNA-PKcs and XRCC4-LigIV [J]. Mutagenesis, 2007, 22(3): 217233

    [42]

    Ochiai H, Sakamoto N, Fujita K, et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27): 1091510920

    [43]

    Paffett K S, Clikeman J A, Palmer S, et al. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths [J]. DNA Repair (Amst), 2005, 4(6): 687698

    [44]

    Schild D, Wiese C. Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability [J]. Nucleic Acids Research, 2010, 38(4): 10611070

  • 期刊类型引用(2)

    1. 熊凤, 谢训卫, 潘鲁媛, 李阔宇, 柳力月, 张昀, 李玲璐, 孙永华. 国家斑马鱼资源中心的资源、技术和服务建设. 遗传. 2018(08): 683-692 . 百度学术
    2. 李国玲, 钟翠丽, 莫健新, 全绒, 吴珍芳, 李紫聪, 杨化强, 张献伟. 动物基因组定点整合转基因技术研究进展. 遗传. 2017(02): 98-109 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1443
  • HTML全文浏览量:  4
  • PDF下载量:  536
  • 被引次数: 2
出版历程
  • 收稿日期:  2014-04-20
  • 修回日期:  2014-07-25
  • 发布日期:  2015-03-24

目录

    /

    返回文章
    返回