运用稳定同位素技术分析大宁河主要鱼类营养层级
THE ANALYSIS OF THE TROPHIC LEVELS OF THE MAJOR FISH SPECIES IN THE DANING RIVER USING STABLE ISOTOPE TECHNOLOGY
-
摘要: 运用氮稳定同位素技术分析了大宁河静水水域和流水河段主要鱼类的氮稳定同位素比值和营养层级,并对静水水域不同水文时期相同鱼类的营养层级进行了比较研究。结果表明, 颗粒有机物(POM)氮稳定性同位素变化幅度较大, 并存在季节差异。大宁河下游静水水域鱼类15N 值范围为4.5417.51, 营养级处于1.513.88, 平均营养层级为2.49;上游流水水域鱼类的15N 值范围为2.2510.81, 营养层级范围为1.494.01, 平均营养层级为2.87。大宁河上游鱼类的平均营养层级大于下游静水水域, 可能是由于上游底栖生物丰富, 鱼类倾向摄食适口性更高的动物性食物而导致。大宁河下游静水水域汛期的鱼类营养层级较非汛期的值显著降低, 可能是因为汛期的水文扰动影响鱼类摄食中间捕食者, 以及水位的降低导致鱼类食物竞争增加迫使其摄食低营养水平的食物。重复基准生物采样建立精确充足的基线值以及确定合适的富集度,是提高营养层级评估准确性的重要手段。Abstract: In this study, we measured the stable nitrogen isotope ratios of the major fish species in the lotic reaches and the impounded reaches of the Daning River to identify their trophic levels, and we compared the mean trophic levels of several conspecifics in lentic waters during different hydrological periods. The results showed that the 15N values of particulate organic matter (POM) fluctuated in a wide range and exhibited significant seasonal variation. The 15N values of species in the lentic downstream ranged from 4.54 to 17.51, and the trophic levels of these organisms were 1.513.88 with an average of 2.49. In the upstream, the 15N values of fish species varied between 2.25 and 10.81, and their trophic levels were in the range of 1.494.01 with an average of 2.87. The fact that the mean trophic levels were higher in the upstream than that in the downstream, which indicated that the fish tended to consume preferable invertebrate in the lotic areas probably due to their high diversity and abundant biomass. The mean trophic levels of conspecifics in the impounded waters were significantly lower in the flooding period than that in the non-flooding period. This is most likely because the hydrological disturbance affected the intermediate predators. Another possibility is that during the low-water period, the fish in the downstream need to forage for food at lower trophic levels because of the intense competition. To improve the assessment of the trophic levels, we will need to determine the appropriate trophic discrimination values and to establish an adequate isotopic baseline by repeated sampling of the baseline organisms.
-
Keywords:
- Stable isotope /
- Daning River /
- Fish /
- Trophic level
-
-
[1] Middelburg J J. Stable isotopes dissect aquatic food webs from the top to the bottom [J]. Biogeosciences, 2014, 11(8): 23572371
[2] Boecklen W J, Yarnes C T, Cook B A, et al. On the use of stable isotopes in trophic ecology [J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 411440
[3] Layman C A, Araujo M S, Boucek R, et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools [J]. Biological Reviews, 2012, 87(3): 545562
[4] Zhang H, Wu G G, Zhang H, et al. Seasonal variations of stable isotopes in fish fauna from East Lake Dongting[J]. Acta Hydrobiologica Sinica, 2013, 37(4): 796798 [张欢, 吴功果, 张欢, 等. 东洞庭湖鱼类稳定同位素的季节变化. 水生生物学报, 2013, 37(4): 796798]
[5] West J B, Bowen G J, Cerling T E, et al. Stable isotopes as one of nature's ecological recorders [J]. Trends in Ecology Evolution, 2006, 21(7): 408414
[6] DeNiro M J, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals [J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 341351
[7] Post D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions [J]. Ecology, 2002a, 83(3): 703718
[8] Post D M. The long and short of food-chain length [J]. Trends in Ecology Evolution, 2002b, 17(6): 269277
[9] Sabo J L, Finlay J C, Post D M. Food chains in freshwaters[J]. Annals of the New York Academy of Sciences, 2009, 1162(1): 187220
[10] Zhang H, He L, Zhang P Y, et al. Food chain length theory: a review [J]. Acta Ecologica Sinica, 2013, 33(24): 76307643 [张欢, 何亮, 张培育, 等. 食物链长度理论研究进展. 生态学报, 2013, 33(24): 76307643]
[11] Roach K A, Thorp J H, Delong M D. Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River [J]. Freshwater Biology, 2009, 54(3): 607620
[12] Valls M, Sweeting C J, Olivar M P, et al. Structure and dynamics of food webs in the water column on shelf and slope grounds of the western Mediterranean [J]. Journal of Marine Systems, 2014, 138: 171-181
[13] Mao Z, Gu X, Zeng Q, et al. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis [J]. Hydrobiologia, 2012, 683(1): 173183
[14] Winemiller K O, Zeug S C, Robertson C R, et al. Food-web structure of coastal streams in Costa Rica revealed by dietary and stable isotope analyses [J]. Journal of Tropical Ecology, 2011, 27(5): 463476
[15] Stowasser G, Atkinson A, McGill R A R, et al. Food web dynamics in the Scotia Sea in summer: A stable isotope study [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 59: 208221
[16] Yang G H, Hou X Q, Sun X L, et al. Constructi on food web model of Liusha Bay-using stable isotope analysis results [J]. Acta Hydrobiologica Sinica, 2013, 37(1): 150156 [杨国欢, 侯秀琼, 孙省利, 等. 流沙湾食物网结构的初探基于稳定同位素方法的分析结果. 水生生物学报, 2013, 37(1): 150156]
[17] Jardine T D, Hadwen W L, Hamilton S K, et al. Understanding and overcoming baseline isotopic variability in running waters [J]. River Research and Applications, 2014, 30(2): 155165
[18] Wang J, Gu B, Huang J, et al. Terrestrial contributions to the aquatic food web in the middle Yangtze River [J]. PloS One, 2014, 9(7): e102473
[19] Li B, Wang Z J, Yang J P, et al. The dynamic and seasonal variation of the fish food webs in the mainstream of Three Gorges Reservoir [J]. Journal of Fisheries of China, 2013, 37(7):10151022 [李斌, 王志坚, 杨洁萍, 等. 三峡库区干流鱼类食物网动态及季节性变化. 水产学报, 2013, 37(7):10151022]
[20] Liu R M, Shen Z Y. Integrated assessment and changes of ecological environment in Daning River watershed [J]. Journal of Beijing Normal University (Natural Science), 2006, 42(2): 200203 [刘瑞民, 沈珍瑶. 大宁河流域生态环境综合评价及其演变. 北京师范大学学报 (自然科学版), 2006, 42(2): 200203]
[21] Wang K, Duan X B, Liu S P, et al. Survey on temporal and spatial distribution of fish in the Daing River [J]. Acta Hydrobiologica Sinica, 2009, 33(3): 516521 [王珂, 段辛斌, 刘绍平, 等. 三峡库区大宁河鱼类的时空分布特征. 水生生物学报, 2009, 33(3): 516521]
[22] Hoeinghaus D J, Winemiller K O, Agostinho A A. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs [J]. Ecosystems, 2007, 10(6): 10191033
[23] Zeug S C, Winemiller K O. Evidence supporting the importance of terrestrial carbon in a large-river food web [J]. Ecology, 2008, 89(6): 17331743
[24] Wang L P, Zheng B H, Zhang J L, et al. Effects on euthrophication and hydrodynamics of Daning River after impoundment of Three Gorges Reservoir [J]. Journal of Lake Sciences, 2012, 24(2): 232237 [王丽平, 郑丙辉, 张佳磊, 等. 三峡水库蓄水后对支流大宁河富营养化特征及水动力的影响. 湖泊科学, 2012, 24(2): 232237]
[25] Pingram M A, Collier K J, Hamilton D P, et al. Spatial and temporal patterns of carbon flow in a temperate, large river food web [J]. Hydrobiologia, 2014, 729(1): 107131
[26] Xu J, Zhang M, Xie P. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling [J]. Journal of Lake Sciences, 2010, 22(1): 820 [徐军, 张敏, 谢平. 氮稳定同位素基准的可变性及对营养级评价的影响. 湖泊科学, 2010, 22(1): 820]
[27] Mao Z G, Gu X H, Zeng Q F, et al. Seasonal and spatial variations of the food web structure in a shallow eutrophic lake assessed by stable isotope analysis [J]. Fisheries Science, 2014, 80(5): 10451056
[28] Anderson C, Cabana G. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes [J]. Journal of the North American Benthological Society, 2007, (2): 273285
[29] Mercado-Silva N, Helmus M R, Zanden M. The effects of impoundment and non-native species on a river food web in Mexico's central plateau [J]. River Research and Applications, 2009, 25(9): 10901108
[30] McHugh P A, McIntosh A R, Jellyman P G. Dual influences of ecosystem size and disturbance on food chain length in streams [J]. Ecology Letters, 2010, 13(7): 881890
[31] Xu J, Zhang M, Xie P. Sympatric variability of isotopic baselines influences modeling of fish trophic patterns [J]. Limnology, 2011, 12(2): 107115
[32] Martnez del Rio C, Wolf N, Carleton S A, et al. Isotopic ecology ten years after a call for more laboratory experiments [J]. Biological Reviews, 2009, 84(1): 91111
[33] Vander Zanden M, Rasmussen J B. Variation in 15N and 13C trophic fractionation: implications for aquatic food web studies [J]. Limnology and Oceanography, 2001, 46(8): 20612066
[34] Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R [J]. Journal of Animal Ecology, 2011, 80(3): 595602
-
期刊类型引用(4)
1. 倪文静,邓华堂,何春,蒲艳,田辉伍,刘绍平,陈大庆,段辛斌. 长江中上游3种鲌的营养生态位比较. 中国水产科学. 2023(02): 236-246 . 百度学术
2. 何春,邓华堂,王果,刘寒文,沈子伟,刘绍平,段辛斌,陈大庆,李云. 基于氮稳定同位素分析的三峡水库主要鱼类营养级研究. 渔业科学进展. 2022(04): 116-126 . 百度学术
3. 温周瑞,熊鹰,徐军,谢平. 太湖贡湖湾食物网特征研究. 水生生物学报. 2016(01): 131-138 . 本站查看
4. 李斌,陈发军,陶敏,岳兴建,王志坚,张耀光. 夏季若尔盖高寒湿地水生生物群落食物网结构特征. 水生生物学报. 2016(02): 313-320 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 1656
- HTML全文浏览量: 23
- PDF下载量: 503
- 被引次数: 10