强壮粗体虫的线粒体基因组及棘头虫的系统发育研究
THE CLONING OF THE MITOCHONDRIAL GENOME OF HEBESOMA VIOLENTUM(ACANTHOCEPHALA) AND THE PHYLOGENETIC ANALYSIS OF ACANTHOCEPHALANS
-
摘要: 通过长距离PCR方法,克隆了鳜(Siniperca chuatsi Basilewsky)肠道内寄生虫强壮粗体虫(Hebesoma violentum Van Cleave)线粒体基因组全长序列,共13393 bp (GenBank登录号:KC415004),有36个基因,其中蛋白编码基因12个,核糖体基因2个,tRNA22个。所有基因均由线粒体基因组同一条链按同一个方向转录。利用该线粒体基因组和已经报道的一些轮虫纲种类的线粒体基因组序列,构建了棘头虫和轮虫的系统发育树。系统发育研究表明:包括强壮粗体虫、隐藏新棘虫Pallisentis celatus(Van Cleave)和Paratenuisentis ambiguous(Van Cleave)在内的始新棘头虫纲(Eoacanthocephala)与古棘头虫纲(Palaeacanthocephala)亲缘关系较近,聚为一枝后再与原棘头虫纲(Archiacanthocephala)聚在一起;棘头虫与双巢类轮虫(Bdelloid)亲缘关系最近,聚为一枝,然后再与单巢类轮虫(Monogonont)聚在一起,表明棘头虫和轮虫具有较近的亲缘关系。Abstract: The acanthocephalan Hebesoma violentum Van Cleave was collected from the intestine of Siniperca chuatsi Basilewsky, which were captured in the Liangzi Lake of Hubei Province, China. Using long PCR we cloned the entire mitochondrial (mt) genome sequence of H. violentum(13,393 bp) (GenBank accession No. KC415004). The genome consists of 36 genes including 12 protein-coding genes, 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs), which was consistent with previous reports about mt genomes of other acanthocephalan species. All genes in the mt genome were encoded on one strand and transcribed in the same direction. The phylogenetic analysis of the mt genomes of acanthocephalans, rotifers and others indicated that the class Eoacanthocephala, containing Pallisentis celatus Van Cleave, Hebesoma violentum Van Cleave and Paratenuisentis ambiguus Van Cleave, was closely related to Palaeacanthocephala which was then correlated with the class Archiacanthocephala. It is obvious that acanthocephalans are closely related to a clade containing bdelloids which were then correlated with the clade containing monogononts. Further phylogenetic analysis of rotifers in the Seisonidea and acanthocephalans in the Polyacanthocephala will provide insights into the phylogenetic relationship between the major taxa of rotifers and/or acanthocephalans, as well as between these two groups.
-
Keywords:
- Acanthocephala /
- Hebesoma violentum /
- Mitochondrial genome /
- Phylogeny /
- Rotifera
-
-
[1] Srensen M V, Giribet G. A modern approach to rotiferan phylogeny: combining morphological and molecular data [J]. Molecular Phylogenetics and Evolution, 2006, 40(2): 585608
[2] Garca-Varela M, Nadler S A. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences [J]. Molecular Phylogenetics and Evolution, 2006, 40(1): 6172
[3] Witek A, Herlyn H, Meyer A, et al. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria [J]. BMC Evolutionary Biology, 2008, 8(1): 345
[4] Fontaneto D, Jondelius U. Broad taxonomic sampling of mitochondrial cytochrome c oxidase subunit I does not solve the relationships between Rotifera and Acanthocephala [J]. Zoologischer Anzeiger, 2011, 250(1): 8085
[5] Amin O M. Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida) [J]. Journal of Parasitology, 1987, 73(6): 12161219
[6] Monks S. Phylogeny of the Acanthocephala based on morphological characters [J]. Systematic Parasitology, 2001, 48(2): 81116
[7] Near T J. Acanthocephalan phylogeny and the evolution of parasitism [J]. Integrative and Comparative Biology, 2002, 42(3): 668677
[8] Garca-Varela M, Nadler S A. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences [J]. Journal of Parasitology, 2005, 91(6): 14011409
[9] Perrot-Minnot M J. Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala) [J]. International Journal for Parasitology, 2004, 34(1): 4554
[10] Passamaneck Y, Halanych K M. Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly [J]. Molecular Phylogenetics and Evolution, 2006, 40(1): 2028
[11] Abascal F, Posada D, Zardoya R. The evolution of the mitochondrial genetic code in arthropods revisited [J]. Mitochondrial DNA, 2012, 23(2): 8491
[12] Steinauer M L, Nickol B B, Broughton R, et al. First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within metazoa [J]. Journal of Molecular Evolution, 2005, 60(6): 706715
[13] Gazi M, Sultana T, Min G S, et al. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata [J]. Parasitology International, 2012, 61(2): 307316
[14] Weber M, Wey-Fabrizius Alexandra R, Podsiadlowski L, et al. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggests secondary loss of sense organs [J]. Molecular Phylogenetics and Evolution, 2013, 66(1): 182189
[15] Xie H X, Gao Q, Nie P. Intestinal pathology of the mandarin fish Siniperca chuatsi infected naturally with the acanthocephalan Hebesomea violentum [J]. Acta Hydrobiologica Sinica, 2005, 29(2): 137141 [谢海侠, 高谦, 聂品.强壮粗体虫寄生引起的鳜肠道病理.水生生物学报, 2005, 29(2): 137141]
[16] YU Y, Wu H S. Studies on the fauna of acanthocephala of fishes from middle reaches of the ChangJiang (Yangtze) River [J]. Acta Hydrobiologica Sinica, 1989, 13(1): 3850 [余仪, 伍惠生.长江中游鱼类寄生棘头虫区系的研究.水生生物学报, 1989, 13(1): 3850]
[17] Lasek-Nesselquist E. A mitogenomic re-evaluation of the bdelloid phylogeny and relationships among the syndermata [J]. PLoS One, 2012, 7(8): e43554
[18] Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucleic Acids Research, 2000, 28(10): 20842090
[19] Pan T S, Nie P. The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers [J]. Folia Parasitologica, 2013, 60(3): 181191
[20] Park J K, Sultana T, Lee S H, et al. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences [J]. BMC Genomics, 2011, 12: 392
[21] Stach T, Braband A, Podsiadlowski L. Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis [J]. Molecular Phylogenetics and Evolution, 2010, 55(3): 860870
[22] Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species [J]. Heredity, 2008, 101(4): 301320
[23] Suga K, Welch D B M, Tanaka Y, et al. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis [J]. Molecular Biology and Evolution, 2008, 25(6): 11291137
[24] Min G S, Park J K. Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata) [J]. BMC Genomics, 2009, 10: 533
[25] Podsiadlowski L, Braband A, Struck T H, et al. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea [J]. BMC Genomics, 2009, 10: 364
[26] Near T J, Garey J R, Nadler S A. Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences [J]. Molecular Phylogenetics and Evolution, 1998, 10(3): 287298
[27] Garca-Varela M, Cummings M P, Prez-Ponce de Len G, et al. Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class Polyacanthocephala (Acanthocephala) [J]. Molecular Phylogenetics and Evolution, 2002, 23(2): 288292
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 1563
- HTML全文浏览量: 0
- PDF下载量: 1073
- 被引次数: 1