大叶藻居群微卫星遗传多样性研究

孙典荣, 李渊, 李文涛, 高天翔

孙典荣, 李渊, 李文涛, 高天翔. 大叶藻居群微卫星遗传多样性研究[J]. 水生生物学报, 2013, 37(1): 82-89. DOI: 10.7541/2013.82
引用本文: 孙典荣, 李渊, 李文涛, 高天翔. 大叶藻居群微卫星遗传多样性研究[J]. 水生生物学报, 2013, 37(1): 82-89. DOI: 10.7541/2013.82
Sun Dian-rong, Li Yuan, Li Wen-tao, Gao Tian-xiang. GENETIC DIVERSITY IN POPULATIONS OF ZOSTER MARINA L. INFERRED FROM NUCLEAR SSR MARKERS[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(1): 82-89. DOI: 10.7541/2013.82
Citation: Sun Dian-rong, Li Yuan, Li Wen-tao, Gao Tian-xiang. GENETIC DIVERSITY IN POPULATIONS OF ZOSTER MARINA L. INFERRED FROM NUCLEAR SSR MARKERS[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(1): 82-89. DOI: 10.7541/2013.82

大叶藻居群微卫星遗传多样性研究

基金项目: 

海洋公益性行业科研专项(201105005)

国家自然科学基金(30700615)资助

GENETIC DIVERSITY IN POPULATIONS OF ZOSTER MARINA L. INFERRED FROM NUCLEAR SSR MARKERS

  • 摘要: 采用4对微卫星引物对大叶藻的7个地理居群进行了遗传多样性与遗传结构分析。扩增148株大叶藻得到57个等位基因, 每个位点平均等位基因数为6, 大叶藻居群的平均期望杂合度(He)为0.687, 平均观测杂合度(Ho)为0.417。青岛湾居群的遗传多样性最高(A=7.750, AR=7.043), 俚岛居群最低(A=4.750, AR=4.543)。从Fst值来看, 7个大叶藻居群间属于中度分化。UPGMA系统发育树显示, 中国4个大叶藻居群聚类到一起, 其遗传分化可能是由于历史大海草场的遗留小片段居群产生, 而中国、韩国、日本和爱尔兰居群间的遗传分化则主要是由于地理隔离造成的。自由交配估计结果支持海草的东亚起源说。青岛湾居群遗传多样性较高, 可优先作为大叶藻移植修复的材料和基因库, 并进行重点保护。
    Abstract: Seagrasses are angiosperms that are thought to have become adaptive to aquatic environment independently. The marine, monocotyledonous Zostera marina is a species of Zosteraceae using traditional classifications, which widely distributes from subtropical to subfrigid coastal oceans. seven natural populations of Z. marina (Lidao, Tian'ehu, Qingdao Bay, Dalian, Naepo, Tokyo Bay and Finavarra) were used in this study. To study the mechanism of the genetic diversity and population structure of the seven populations, microsatellite marker (SSR) analysis was done. A total of 57 alleles were identified in 148 individuals across the four microsatellite primers analyzed, with a mean value of 6 alleles per locus. The mean expected heterozygosity (He) and observed heterozygosity (Ho) across all populations were 0.687 and 0.417, respectively, and a higher level of diversity was found in the population from the Qingdao Bay (A=7.750, AR=7.043) than other populations. The minimum Fst value was 0.051 between the populations from the Qingdao Bay and Dalian. The maximum Fst value was 0.261 between the populations from Tian'ehu and Finavarra. The Fst values suggested moderate genetic differentiation within most of the Z. marina populations. From the UPGMA tree, four populations in China (Lidao, Tian'ehu, Qingdao Bay and Dalian) clustered together, and the genetic relationships may be attributed to eelgrass meadow fragmentation. The geographic distance was responsible for the genetic differentiation from large-scale among populations in China (Lidao, Tian'ehu, Qingdao Bay and Dalian), Korea (Naepo), Japan (Tokyo Bay) and Ireland (Finavarra). Results of possible number of clusters supported that this seagrass species originated from East Asia. The population from the Qingdao Bay has higher genetic diversity, suggesting that populations in this region demand prioritized conservation and utilization for breeding programs.
  • [1]

    den Hartog C. The Seagrasses of the World [M]. Amsterdam: North Holland Publication Co. 1970, 1—275

    [2]

    Hemminga M, Duarte C. Seagrass Ecology [M]. Cambridge: Cambridge University Press. 2000, 1—32

    [3]

    Olsen J L, Stam W T, Coyer J A, et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. [J]. Molecular Ecology, 2004, 13(7): 1923—1941

    [4]

    Orth R J, Luckenbach M, Marion S R, et al. Seagrass recovery in the Delmarva coastal bays, USA [J]. Aquatic Botany, 2006, 84(1): 26—36

    [5]

    Campanella J J, Bologna P A X, Smith S M, et al. Population structure of Zostera marina (eelgrass) on the western Atlantic coast is characterized by poor connectivity and inbreeding [J]. Journal of Heredity, 2010, 101(1): 61—70

    [6]

    Li W T, Zhang X M. The ecological functions of seagrass meadows [J]. Periodical of Ocean University of China, 2009, 39(5): 933—939 [李文涛, 张秀梅. 海草场的生态功能. 中国海洋大学学报, 2009, 39(5): 933—939]

    [7]

    Li Y, Li W T, Sun D R, et al. Phylogenetic relationships in zosteraceae based on matK and ITS nucleotide sequences [J]. Acta Hydrobiologica Sinica, 2011, 35(6): 900—907 [李渊, 李文涛, 孙典荣, 等. 基于matK 基因和ITS 序列探讨大叶藻科的系统发育关系. 水生生物学报, 2011, 35(6): 900—907]

    [8]

    De Heij H, Nienhuis P H. Intraspecific variation in isozyme patterns of phenotypically separated populations of Zostera marina L. in the south-western Netherlands [J]. Journal of Experimental Marine Biology and Ecology, 1992, 161(1): 1—14

    [9]

    Williams S, Orth R J. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays [J]. Estuaries, 1998, 21(1): 118—128

    [10]

    Liu B Q, Zeng Q G, Wang Y J, et al. The cross-species amplification and validation of EST-SSR loci in Porphyra haitanensis [J]. Acta Hydrobiologica Sinica, 2007, 31(2): 149—154

    [11]

    Reusch T B H. Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas [J]. American Society of Limnology and Oceanography, 2002, 47(1): 78—85

    [12]

    Oetjen K, Ferber S, Dankert I, et al. New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers [J]. Marine Biology, 2010, 157(1): 81—89

    [13]

    Ban Y. Methods of DNA and RNA isolation of Oryza sativa [A]. In: Shimamoto K, Sasaki T (Eds.), PCR Experiments Protocol of Plants [C]. Tokyo: Shujunsha. 1997, 34—40

    [14]

    Reusch T B H, Stam W T, Olsen J L. Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations [J]. Molecular Ecology, 1999, 8(2): 317—321

    [15]

    Reusch T B H. Five microsatellite loci in eelgrass Zostera marina and a test of cross-species amplification in Z. noltii and Z. japonica [J]. Molecular Ecology, 2000, 9(3): 365—378

    [16]

    Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics, 1980, 32(3): 314—331

    [17]

    Falush D, Stephens M, Pritchard J. Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies [J]. Genetics, 2003, 164: 1567—1587

    [18]

    Soltis P S, Soltis D E. Genetic variation in endemic and widespread plant species examples from Saxifragaceae and Polystichum [J]. Aliso, 1991, 13(1): 215—223

    [19]

    Huenneke L F. Ecological implications of genetic variation in plant populations [A]. In: Falk D A, Holsinger K E (Eds.), Genetics and Conservation of Rare Plants [C]. New York: Oxford University Press. 1991, 31—44

    [20]

    Campanella J J, Bologna P A X, Smith S M, et al. Zostera marina population genetics in Barnegat Bay, New Jersey, and implications for grass bed restoration [J]. Population Ecology, 2010, 52(1): 181—190

    [21]

    Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics, 1980, 32(3): 314—331

    [22]

    Laushman R H. Population genetics of hydrophilous angiosperms [J]. Aquatic Botany, 1993, 44(2): 147—158

    [23]

    Palstra F P, Ruzzante D E. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence [J]? Molecular Ecology, 2008, 17(15): 3428—3447

    [24]

    Wright S. Evolution and the genetics of populations [A], Volume 4: Variability within and among Natural Populations [C]. Chicago: University of Chicago Press. 1978, 65—134

    [25]

    Aioi K. A daybreak in the studies on Japanese Zostera beds (in Japanese with English abstract) [J]. Aquabiology, 2000, 22(6): 516—523

    [26]

    Tanaka N, Kuo J, Omori Y, et al. Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data [J]. Journal of Plant Research, 2003, 116(4): 273—279

    [27]

    Jones T C, Gemmill C E C, Pilditch C A. Genetic variability of New Zealand seagrass (Zostera muelleri) assessed at multiple spatial scales [J]. Aquatic Botany, 2008, 88(1): 39—46

    [28]

    Rose C G, Paynter K T, Hare M P. Isolation by distance in the Eastern oyster, Crassostrea virginica, in Chesapeake Bay [J]. Journal of Heredity, 2006, 97(2): 158—170

    [29]

    Liu J X, Gao T X, Yokogawa K, et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific [J]. Molecular Phylogenetics and Evolution, 2006, 39(3): 799—811

    [30]

    Liu J X, Gao T X, Wu S F, et al. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845) [J]. Molecular Ecology, 2007, 16(2): 275—288

    [31]

    Palumbi S R, Grabowsky G, Duda T, et al. Speciation and population genetic structure in tropical Pacific sea urchins [J]. Evolution, 1997, 51(5): 1506—1517

    [32]

    Hewitt G M. Some genetic consequences of ice ages, and their role in divergence and speciation [J]. Biology Journal of the Linnean Society, 1996, 58(3): 247—276

    [33]

    Widmer A, Lexer C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity [J]. Trends in Ecology and Evolution, 2001, 16(6): 267—269

    [34]

    Li C, Liu H, Huang R, et al. Identification of typeⅠmicrosatellite markers and their polymorphism in grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica, 2011, 35(4): 681—688 [李偲, 刘航, 黄容, 等. 草鱼Ⅰ型微卫星标记的发掘及其多态性检测. 水生生物学报, 2011, 35(4): 681—688]

    [35]

    McKay J K, Christian C E, Harrison S, et al. “How local is local?”-A review of practical and conceptual issues in the genetics of restoration [J]. Restoration Ecology, 2005, 13(3): 432—440

    [36]

    Johannesson K, André C. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea [J]. Molecular Ecology, 2006, 15(8): 2013—2029

  • 期刊类型引用(5)

    1. 毛常清,沙秀芬,陶珊,吴宇,彭芳,廖海浪,袁灿,张超. 川芎SSR标记开发及遗传多样性分析. 中国现代中药. 2024(11): 1854-1866 . 百度学术
    2. 沙秀芬,彭芳,陶珊,吴宇,刘继明,张超,李群. 丹参线粒体和叶绿体微卫星标记开发及多样性分析. 西北植物学报. 2018(12): 2215-2223 . 百度学术
    3. 陈思婷,邱广龙. 海草分子生物学研究进展. 广西科学. 2017(05): 448-452+461 . 百度学术
    4. 王娟,杜建材,王照兰,刘佳月,李青丰. 36份苜蓿种质材料遗传多样性的SSR分子标记. 中国草地学报. 2016(02): 20-25+33 . 百度学术
    5. 胡吟胜,杨文杰,黄勃,于淑楠. 基于EST-SSR不同地理的琼枝群体遗传差异研究. 基因组学与应用生物学. 2013(03): 367-371 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1517
  • HTML全文浏览量:  2
  • PDF下载量:  698
  • 被引次数: 17
出版历程
  • 收稿日期:  2011-10-23
  • 修回日期:  2012-10-08
  • 发布日期:  2013-01-24

目录

    /

    返回文章
    返回