人工养殖与选育对罗氏沼虾遗传多样性的影响

陈雪峰, 杨国梁, 孔杰, 栾生 张宇飞, 王军毅, 高强, 罗坤 宫金华, 叶少群

陈雪峰, 杨国梁, 孔杰, 栾生 张宇飞, 王军毅, 高强, 罗坤 宫金华, 叶少群. 人工养殖与选育对罗氏沼虾遗传多样性的影响[J]. 水生生物学报, 2012, 36(5): 866-873. DOI: 10.3724/SP.J.1035.2012.00866
引用本文: 陈雪峰, 杨国梁, 孔杰, 栾生 张宇飞, 王军毅, 高强, 罗坤 宫金华, 叶少群. 人工养殖与选育对罗氏沼虾遗传多样性的影响[J]. 水生生物学报, 2012, 36(5): 866-873. DOI: 10.3724/SP.J.1035.2012.00866
CHEN Xue-Feng, YANG Guo-Liang, KONG Jie, LUAN Sheng, ZHANG Yu-Fei, WANG Jun-Yi, GAO Qiang, LUO Kun. EFFECT OF ARTIFICIAL CULTURE AND SELECTIVE BREEDING ON THE GENETIC DIVERSITY OF MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(5): 866-873. DOI: 10.3724/SP.J.1035.2012.00866
Citation: CHEN Xue-Feng, YANG Guo-Liang, KONG Jie, LUAN Sheng, ZHANG Yu-Fei, WANG Jun-Yi, GAO Qiang, LUO Kun. EFFECT OF ARTIFICIAL CULTURE AND SELECTIVE BREEDING ON THE GENETIC DIVERSITY OF MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(5): 866-873. DOI: 10.3724/SP.J.1035.2012.00866

人工养殖与选育对罗氏沼虾遗传多样性的影响

基金项目: 

浙江省重大科技专项项目(2007C12059)

科技部农业科技成果转化资金项目(2007GB2C200124) 资助

EFFECT OF ARTIFICIAL CULTURE AND SELECTIVE BREEDING ON THE GENETIC DIVERSITY OF MACROBRACHIUM ROSENBERGII

  • 摘要: 为探讨人工养殖与选择育种对罗氏沼虾(Macrobrachium rosenbergii)遗传多样性的影响, 实验测定了孟加拉野生群体、缅甸野生群体、浙江养殖群体、广西养殖群体及选育群体“南太湖2号”共111只罗氏沼虾核糖体转录间隔区2 (Internal transcribed spacer 2, ITS2)基因序列, 结果发现58个碱基变异位点, 定义56个单倍型。在5个群体中, 孟加拉野生群体的遗传多样性最高 (平均核苷酸差异数K和核苷酸多态性指数Pi分别为7.186和0.0155), 依次为缅甸野生群体、浙江养殖群体、广西养殖群体, 选育群体“南太湖2号”遗传多样性最低 (K和Pi分别为3.032和0.0065)。5个群体间配对Fst分析表明, 养殖群体与野生群体遗传分化显著(P0.01), 选育群体“南太湖2号”不仅与野生群体遗传分化显著, 同时还与广西养殖群体产生了显著的遗传分化(P0.01)。系统树显示, 孟加拉野生群体和缅甸野生群体聚为一支, 浙江养殖群体、广西养殖群体和选育群体“南太湖2号” 则聚为另一支。研究结果表明, 人工养殖和选育降低了罗氏沼虾的遗传多样性水平, 并导致群体间发生了显著的遗传分化。
    Abstract: The giant freshwater prawn (Macrobrachium rosenbergii) is one of the most important crustaceans in inland aquaculture, especially in many tropical and subtropical areas. China has become the largest producer of the giant freshwater prawn in the world. For protecting species resources and then achieving selective breeding, it is necessary to study the effect of artificial culture and selective breeding on the genetic diversity of M. rosenbergii. In this study, the ribosomal internal transcribed spacer 2 (ITS2) of 111 individuals from 5 populations (Bengal wild population, Burma wild population, Zhejiang culture population, Guangxi culture population and selected population “South Tailake No. 2”) were sequenced and analyzed in order to estimate the genetic diversity and genetic differentiation of M. rosenbergii. Genomic DNA was isolated following the standard method from muscle tissue, and then was kept at -20℃. PCR primers were synthesized by Shanghai Generay Biotech Co., Ltd. The PCR reaction mixture contained 25 μL, thermal cycling consisted of an initial denaturing at 94℃ for 2min, followed by 30 cycles of denaturing at 94℃ with each cycle of 30s, 45s annealing at 55℃, and 1min extension at 72℃, and concluded with a final extension at 72℃ for 10min. The PCR products, which were purified and sequenced by Shanghai Generay Biotech Co., Ltd and analyzed using CLUSTL W, Dna SP 4.10, Mega 4.0 and Arlequin 3.0 softwares.The results showed that 58 variations and 56 haplotypes were revealed in the 111 sequences. The mean contents of A, T, C and G were 21.6%, 24.4%, 19.5% and 34.6% in ITS2, and the content of G + C was significantly higher than A + T. It was also found that Bengal wild population had the highest genetic diversity with 7.186 for the average of nucleotide differences (K) and 0.0155 for nucleotide diversity (Pi). In decreasing order of genetic diversity, the others were Burma wild population, Zhejiang culture population, Guangxi culture population in turn. And selected population “South Tailake No. 2” had the lowest genetic diversity (K and Pi were 3.032 and 0.0065, respectively) among the five populations of M. rosenbergii. Pairwise Fst of control region sequence analysis among five populations showed that there were significant differences between the wild populations and the culture populations (P0.01). Significant differences were also found not only between selected population “South Tailake No. 2” and wild populations, but also between selected populations “South Tailake No. 2” and Guangxi culture population (P0.01). Genealogical tree showed that Bengal wild population and Burma wild population clustered together, Zhejiang culture population, Guangxi culture population and selected population “South Tailake No. 2” clustered together. The results indicated that the ITS2 sequence was a good molecular marker for detecting genetic variation of M. rosenbergii populations, in addition, artificial culture and breeding had led to decreases in genetic diversity and significant genetic differentiation among M. rosenbergii populations. After a 4-generation selection, there was clear genetic differentiation between new selected population “South Tailake No. 2” and the base population, and the new breed with stable characteristics would lay a foundation for breeding other new varieties.
  • [1]

    Yang G L, Luo K, Kong J, et al. Correlation of growth and survivorship for Macrobrachium rosenbergii in different culture conditions [J]. Marine Fisheries Research, 2008, 29(3): 74-79 [杨国梁, 罗坤, 孔杰, 等. 罗氏沼虾不同养殖条件下的生长和存活率相关分析. 海洋水产研究, 2008, 29(3): 74-79]

    [2]

    Gao Q, Yang G L, Wang J Y, et al. Studies on muscle nutritive quality of a selected strain of Macrobrachium rosenbergii, “South Tailake No. 2” [J]. Journal of Fisheries of China, 2011, 35(1): 116-123 [高强, 杨国梁, 王军毅, 等. 罗氏沼虾“南太湖2号”选育群体肌肉营养品质研究. 水产学报, 2011, 35(1): 116-123]

    [3]

    Dover G A. Molecular drive in muhigene families, how biological novelties arise spread and assimilated [J]. Trends in Genetics, 1986, 2: 159-165

    [4]

    Shi Z G, An W, Jiao E N, et al. Genetic polymorphism of eighteen Lycium barbarum resources based on nrDNA ITS sequence [J]. Agricultural Science & Technology, 2008, 9(3): 53-55

    [5]

    Jiang Z Y, Niu D H, Chen H, et al. The genetic analysis of ITS-1 and ITS-2 between wild and cultured populations of Sinonovacula constricta in Fujian [J]. Marine Fisheries, 2007, 29(4): 314-318 [姜志勇, 牛东红, 陈慧, 等. 福建缢蛏野生群体与养殖群体的ITS1和ITS2分析. 海洋渔业, 2007, 29(4): 314-318]

    [6]

    Li M Y, Zhang H Q, Zhu J J, et al. Genetic variation between cultured population from Zhejiang province and natural population from Burma of Macrobrachium rosenbergii revealed by RAPD method [J]. Journal of Fisheries of China, 2004, 28(4): 360-364 [李明云, 张海琪, 朱俊杰, 等. 罗氏沼虾浙江养殖群体与缅甸自然群体遗传差异的RAPD分析. 水产学报, 2004, 28(4): 360-364]

    [7]

    Divu D, Khushiramani R, Malathi S, et al. Isolation, characterization and evaluation of mircrosatellite DNA makers in giant freshwater prawn Macrobrachium rosenbergii, from South India [J]. Aquaculture, 2008, 284(1): 281-284

    [8]

    Yang X M, Guo Y F, Chen F Y, et al. Intraspecific DNA sequence polymorphism and genetic markers in the mitochondrial COI gene from three populations of Macrobrachium rosenbergii [J]. Hereditas (Beijing), 2006, 28(5): 540-544 [杨学明, 郭亚芬, 陈福艳, 等. 罗氏沼虾3个群体线粒体COI基因的序列差异和遗传标记研究. 遗传, 2006, 28(5): 540-544]

    [9]

    Yao Q, Yang P, Chen L Q, et al. Interspecific DNA sequence polymorphism in the mitochondrial D-loop gene from three populations of Macrobrachium rosenbergii [J]. Journal of Fisheries of China, 2007, 31(Suppl.): 18-22 [姚茜, 杨频, 陈立侨, 等. 罗氏沼虾三群体线粒体D-loop基因序列差异的初步研究. 水产学报, 2007, 31(增刊): 18-22]

    [10]

    Yang X M, Huang G H, Jiang Q Y, et al. The sequence variation and conservatism analysis of mitochondrial 16SrRNA gene from different populations of Macrobrachium rosenbergii [J]. Southwest China Journal of Agricultural Sciences, 2007, 20(6): 1373-1376 [杨学明, 黄光华, 蒋钦杨, 等. 罗氏沼虾不同群体线粒体16SrRNA基因的序列变异及其保守性分析. 西南农业学报, 2007, 20(6): 1373-1376]

    [11]

    Sambrook J, Fritsch E, Maniatis T. Molecular Cloning-A Laboratory Manual [M]. New York: Cold Springs Harbor Laboratory Press. 1989, 463-468

    [12]

    Rozas J, Sánchez-DelBarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 2003, 19(18): 2496-2497

    [13]

    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599

    [14]

    Excoffier L, Laval G, Schneider S. Arlequin ver.3.0: An integrated software package for population genetics data analysis [Z]. Evolutionary Bioinformatics Online, 2005, 1: 47-50

    [15]

    Slatkin M. A measure of population subdivision based on microsatellite allele frequencies [J]. Genetics, 1995, 139(1): 457-462

    [16]

    Yang B, Chen X Y, Yang J X. Structure of the mitochondrial DNA control region and population genetic diversity analysis of Anabarilius grahami (Regan) [J]. Zoological Research, 2008, 29(4): 379-385 [杨博, 陈小勇, 杨君兴. 浪白鱼线粒体DNA控制区结构和种群遗传多样性分析. 动物学研究, 2008, 29(4): 379-385]

    [17]

    Zhang H, Gao T X, Zhuang Z M, et al. Comparative analysis of the mitochondrial control region between the cultured and wild populations of Chinese shrimp (Fenneropenaeus chinensis) [J]. Journal of Fisheries of China, 2010, 34(8): 1149-1155 [张辉, 高天翔, 庄志猛, 等. 中国对虾养殖群体与野生群体线粒体控制区序列的比较. 水产学报, 2010, 34(8): 1149-1155]

    [18]

    Zhuang Z M, Meng X H, Quan J X, et al. Genetic diversity in the wild population and hatchery stock of Penaeus japonicus shrimp by isoenzyme analysis [J]. Zoological Research, 2000, 21(4): 323-326 [庄志猛, 孟宪红, 权洁霞, 等. 日本对虾野生种群和养殖群体的同工酶遗传变异. 动物学研究, 2000, 21(4): 323-326]

    [19]

    Xie X Y, Li S F, Cai W Q. Analysis of genetic diversity of GIFT strain Nile tilapia (Oreochromis niloticus) during selection processing by microsatellites [J]. Journal of Fisheries of China, 2007, 31(3): 385-390 [颉晓勇, 李思发, 蔡完其. 吉富品系尼罗罗非鱼选育过程中遗传变异的微卫星分析. 水产学报, 2007, 31(3): 385-390]

    [20]

    Zhao Y, Li S F, Tang S J. Genetic variations among late selected strains and wild populations of blunt snout bream (Megalobrama amblycephala) by ISSR analysis [J]. Journal of Fisheries of China, 2009, 33(6): 893-900 [赵岩, 李思发, 唐首杰. 团头鲂“浦江1号”选育后期世代群体同野生群体间遗传变异的ISSR分析. 水产学报, 2009, 33(6): 893-900]

    [21]

    He Y Y, Liu P, Li J, et al. Analysis of genetic structure in the first cultured stock and the sixth cultured stock of Fenneropenaeus chinensis [J]. Journal of Fishery Sciences of China, 2004, 11(6): 572-575 [何玉英, 刘萍, 李健, 等. 中国明对虾第一代和第六代人工选育群体的遗传结构分析. 中国水产科学, 2004, 11(6): 572-575]

    [22]

    Benzie J A H, Ballment E, Forbes A T, et al. Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon [J]. Molecular Ecology, 2002, 11(12): 2553-2569

    [23]

    Benzie J A H, Frusher S, Ballment E, et al. Geographical variation in allozyme frequencies of populations of Penaeus monodon (Crustacea: Decapoda) in Australia [J]. Australian Journal of Marine and Freshwater Research, 1992, 43(4): 715-725

    [24]

    Brooker A L, Benzie J A H, Blair D, et al. Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers [J]. Marine Biology, 2000, 136(1): 149-157

    [25]

    Cui Z X, Li C P, Jang I K, et al. Lack of genetic differentiation in the shrimp Penaeus Chinensis in the Northwestern Pacific [J]. Biochemical Genetics, 2007, 45(7-8): 579-588

    [26]

    Kancee C, Supawadee P, Uthairat N N, et al. Genetic diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand [J]. Aquaculture, 2007, 271(1-4): 121-129

  • 期刊类型引用(22)

    1. 张雨阳,赵莉,桂朗,王余德,孙盛明,李名友,刘东. 雌雄罗氏沼虾脑和胸神经节的转录组比较分析. 南方农业学报. 2023(03): 657-668 . 百度学术
    2. 雷宁,曾建刚,沈小明,叶金云,朱俊杰. 不同生长环境下花■的形态特征比较. 安徽农业科学. 2021(04): 88-91+95 . 百度学术
    3. 赵振坤,邓凤彬,张锐,李根,金强. 基于坚果表型性状的新疆栽培核桃种质资源多样性研究与比较. 塔里木大学学报. 2021(01): 20-27 . 百度学术
    4. 徐晔,杨国梁,夏正龙,蔡缪荧,杨杰,李景芬,高权新,陈书畅,程汉良,唐琼英. 罗氏沼虾雄性个体异质生长研究进展. 水产学杂志. 2021(04): 93-98 . 百度学术
    5. 周晓敏,戴习林. 罗氏沼虾SNP标记筛选及不同群体的遗传多样性. 水产学报. 2020(08): 1249-1263 . 百度学术
    6. 唐琼英,谢巨洪,夏正龙,蔡缪荧,吴云明,白鹿淮,杜厚宽,李景芬,杨国梁. 罗氏沼虾不同育种群体遗传多样性研究. 水生生物学报. 2020(05): 1097-1104 . 本站查看
    7. 邬育龙,戴习林,周梦颖,蒋飞,孔嘉明. 盐度对罗氏沼虾生长和性别分化的影响. 西南农业学报. 2020(09): 2118-2124 . 百度学术
    8. 陈雪峰,王春琳,顾志敏,徐宾朋,张宇飞,慎佩晶,程海华,彭菲,李喜莲,黄振远. 罗氏沼虾(Macrobrachium rosenbergii)卵巢发育不同时期转录组分析. 海洋与湖沼. 2019(02): 398-408 . 百度学术
    9. 吕敏,黄光华,李旻,杨琼,卢小花,甘晖,阮志德,黄立斌,杨彦豪,卢天和,马华威. 异型雄性罗氏沼虾遗传多样性的微卫星分析. 水产科学. 2019(03): 355-360 . 百度学术
    10. 黄振远,陈雪峰,李喜莲,濮剑威,高强,慎佩晶,彭菲,张宇飞. 罗氏沼虾“南太湖2号”种虾与2个引进群体形态特征的比较. 江苏农业科学. 2018(13): 159-164+240 . 百度学术
    11. 胡玉婷,段国庆,凌俊,江河,侯冠军. 金色鳜鱼选育群体与野生群体的遗传变异分析. 江苏农业科学. 2018(20): 197-200 . 百度学术
    12. 袁锐,张朝晖,陈辉,方苹,陈静,刘训猛,吴亚锋,王晶晶. 罗氏沼虾“铁壳”现象及其防控研究进展. 水产科学. 2017(03): 383-390 . 百度学术
    13. 张宏祥,张明理,桂东伟,姜黎. 新疆核桃4个栽培品种及野生种的遗传多样性分析. 植物资源与环境学报. 2017(02): 10-16 . 百度学术
    14. 吴怡迪,骆轩,杨章武,黄永春,游伟伟. 凡纳滨对虾选育系间杂交的生长性状及遗传多样性分析. 厦门大学学报(自然科学版). 2016(05): 646-653 . 百度学术
    15. 郑串,潘连德. 养殖虾类红体病和红体症状的研究概况和探讨. 水产养殖. 2016(07): 40-44 . 百度学术
    16. 陈雪峰,杨国梁,高强,夏正龙,濮剑威,慎佩晶,黄振远. 罗氏沼虾(Macrobrachium rosenbergii)幼体新暴发病病原阴沟肠杆菌的分离鉴定. 海洋与湖沼. 2015(06): 1467-1477 . 百度学术
    17. 孙成飞,叶星,董浚键,田园园,梁健辉. 罗氏沼虾6个养殖群体遗传多样性的微卫星分析. 南方水产科学. 2015(02): 20-26 . 百度学术
    18. 李建勋,杨卫明. 罗氏沼虾原良种引进及繁殖性能评价研究. 中国农业信息. 2015(09): 59 . 百度学术
    19. 吴廉,慈元吉,黄姝,茅海成,王中清,王成辉. 中华绒螯蟹配套系育种群体与野生群体的遗传比较与选择压力分析. 中国水产科学. 2015(02): 204-213 . 百度学术
    20. 夏建海,范武江,王晓清,马晓,戴振炎,王璐明. 3个不同地理日本沼虾天然群体遗传多样性的SSR分析. 湖南师范大学自然科学学报. 2014(04): 23-28 . 百度学术
    21. 余求妹,水柏年,谢旭,杨宇阳,李志. 罗氏沼虾养殖管理问题及对策研究. 农村经济与科技. 2013(09): 152-153+124 . 百度学术
    22. 朱其建,戴习林,邹卫丽,蒋飞,苏建,过正乾,王海洋,丁福江. 罗氏沼虾抗病选育群体的抗病性能及其遗传多样性分析. 水产学报. 2013(10): 1468-1478 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1034
  • HTML全文浏览量:  1
  • PDF下载量:  788
  • 被引次数: 36
出版历程
  • 收稿日期:  2011-06-27
  • 修回日期:  2012-04-18
  • 发布日期:  2012-10-24

目录

    /

    返回文章
    返回