REVIEW IN THE EFFECTS OF AQUACULTURE FACILITY SPACE ON FISH WELFARE
-
摘要:
随着设施化水产养殖模式的快速发展, 养殖设施中鱼类福利问题逐渐受到关注。养殖设施空间大小直接决定了鱼类的活动空间范围, 高密度集约化养殖成为设施养殖的显著特点之一。养殖空间大小以及空间内养殖密度高低对鱼类具有复杂多样的生物学效应, 显著影响了鱼类生理、行为、生长等相关福利需求。在进行养殖设施空间设计时, 综合考虑养殖空间对鱼类福利的影响, 会带来更好的养殖效益。文章阐释了鱼类福利的具体内涵与发展现状, 综述了养殖设施空间大小以及空间内鱼类密度对鱼类福利影响的研究进展, 提出了今后关于养殖设施空间对鱼类福利影响的研究关注点, 以期为鱼类福利的研究、应用及设施化渔业的发展提供参考依据。
Abstract:With the rapid development of facility aquaculture mode, fish welfare in aquaculture facilities has gradually attracted attention. The size of aquaculture spaces directly affects fish movement, and high-density intensive aquaculture has become one of the prominent features of facility aquaculture. Both the spatial dimensions of culture environments and stocking densities have complex biological impacts on fish, which significantly affects the welfare demands of fish physiology, behavior, and growth. In aquaculture facilities design, the comprehensive approach that considers the impact of space on fish welfare can enhance overall aquaculture benefits. This paper explains the profound connotation and development status of fish welfare concept, reviewing the research progress on the effects of aquaculture facility spatial size and stocking density on fish welfare. Additionally, it addresses and recommends future research concerns on optimizing aquaculture facility space to improve fish welfare. This review provides a reference for the research and application of fish welfare and the development of facility fisheries.
-
Keywords:
- Fish welfare /
- Spatial size /
- Stocking density /
- Facility aquaculture
-
设施化水产养殖以绿色发展理念为指导, 利用先进设施装备和现代科学技术进行渔业生产, 旨在实现优质高产与生态健康的生产目标, 是现代水产养殖业发展的主要方向[1, 2], 也是促进“向设施农业要食物”的渔业新质生产力发展的重要途径。设施化养殖的特点是进行集约化、高密度的养殖, 进而达到高产高效的效果[2]。但这种高密度的养殖方式会挤压鱼类活动空间, 使鱼类受到空间拥挤的应激胁迫, 进而对鱼类的生长、行为和健康等产生负面影响[3]。在养殖过程中, 养殖设施的空间设计直接决定了鱼类的生活空间和活动范围, 鱼类对养殖空间的响应由养殖密度变化和养殖空间大小交互作用产生。在养殖设施的物理空间内, 放养鱼类数量增加导致的高养殖密度会挤压鱼类个体对空间的利用程度, 但随着养殖空间的增大会改变高养殖密度下鱼类原有的应激程度和生长性能。物理生活空间的大小会影响圈养动物的行为和生理状态[4, 5], 鱼类生活在不同的养殖空间中也会表现出不同的生长性能[6]。在设施化养殖过程中, 养殖空间的改变会对鱼类的行为、生长、健康等福利需求产生一系列的影响[7, 8]。目前没有准则针对养殖鱼类福利需求对水产养殖设施空间设计提出具体的要求。因此, 研究高密度养殖模式下不同养殖空间中鱼类的福利需求及其相关问题, 能够为养殖设施的构建提供科学的生物学依据。
近年来, 人们不仅只关注养殖鱼类的经济效益, 对养殖过程中鱼类行为、健康等福利问题的关注度也逐步增加。相关国家和国际组织相继出台一系列政策和操作规范用于保障养殖鱼类福利[9]。作为一类具有敏感神经感知的脊椎动物, 鱼类当面对环境胁迫时会调动神经−内分泌系统做出应激反应, 从而逐步做出行为和生理生化系统的响应[10], 进而影响鱼类的社交行为、生长健康等福利问题。这不仅关系到生物伦理学, 还直接影响到水产品质量安全与水产养殖的可持续发展。研究发现, 较差的鱼类福利条件会导致养殖鱼类应激反应、行为异常、生长缓慢、免疫力低下、肌肉品质下降和生产效益降低[11—13], 保持较好的鱼类福利则能够提高鱼类的生长效率[9]。良好的鱼类福利意味着养殖鱼类需要有良好的水质环境、适宜的养殖密度及合理的投喂策略等。此外, 福利养殖与养殖经济效益并不矛盾, 福利养殖是获得无公害、高品质、高价优良的水产品的必要途径[14]。随着全球水产养殖业的快速发展, 保护鱼类福利, 确保鱼类在养殖过程中免受不必要的痛苦和应激, 成为了现代可持续渔业发展的重要议题。
随着设施化养殖产业的不断发展, 人工养殖环境对鱼类福利的影响研究已经在草鱼(Ctenopharyngodon idella)[11]、西伯利亚鲟(Acipenser baerii)[15]、团头鲂(Megalobrama amblycephala)[16]、大口黑鲈(Micropterus salmoides)[17]、黄颡鱼(Pelteobagrus fulvidraco)[18]等鱼类中报道。设施化养殖环境中影响鱼类福利的因素有很多, 其中物理空间的变化扮演着重要的角色[9, 19]。鱼类在养殖水体中的活动范围是由养殖空间和养殖密度共同决定的, 即相同密度下, 不同的养殖空间会影响鱼类的应激和生长等福利状况[7, 8]; 而在相同空间下, 较高的养殖密度会限制鱼类的活动范围, 使鱼类受到拥挤胁迫, 进而损害鱼类福利[20]。在渔业养殖生产中, 保障鱼类福利有利于维持养殖品种的产量和经济效益, 实现渔业的可持续发展, 并对生态系统的健康和稳定具有重要意义。福利养殖能够获得高品质的优良水产品, 并有利于推动我国水产品走向国际贸易化。了解鱼类福利的具体表现形式, 发展福利养殖已然是当今设施化养殖发展的主要趋势之一。因此, 本文主要论述了鱼类福利的概念和发展历程, 并综合整理了鱼类福利的相关研究资料, 综合阐述空间变化对鱼类的生物学效应。
1. 鱼类福利发展概述
早在20世纪中叶, 动物福利就成为一个重要的社会议题, 但最初的关注点主要集中在陆生动物上, 对于水生动物, 尤其是鱼类, 相关研究和关注相对较少[21]。到了20世纪70年代, 英国有关学者将动物福利的理念应用到养殖鱼类上; 英国防止虐待动物协会(Royal Society for the Prevention of Cruelty to Animals, RSPCA)在1976年发布了首份关注鱼类福利的报告, 指出所有脊椎动物均有享受动物福利的权力, 不能区别对待温血动物和冷血动物[22]。世界农场动物福利协会(Compassion in World Farming, CIWF)于20世纪90年代首次提出鱼类福利的概念[23], 此后人们对于鱼类福利的研究也越来越多, 包括繁育、养殖、活鱼运输以及离水宰杀等各个环节。世界动物卫生组织(World Organization for Animal Health, WOAH)指出, 如果动物健康、感觉舒适、营养充足、安全、能够自由表达天性并且不受痛苦、恐惧和压力威胁, 则满足动物福利的要求。鱼类福利属于动物福利的一种, 遵从英国“农场动物福利委员会”(Farm Animal Welfare Council, FAWC)提出的五大自由原则: 享受不受饥渴的自由, 享受生活舒适的自由, 享受不受痛苦、伤害和疾病的自由, 享受生活无恐惧和无悲伤的自由, 享受表达天性的自由[24]。此外也有学者提出, 鱼类福利是指鱼类在其生存环境中所享有的健康、舒适和行为自由的状态, 包括生命功能, 天性行为和心理感受三大方面。这一概念包含了多个维度, 包括生理健康、行为表现、环境适宜性和心理状态等, 解释了鱼类福利的定义不仅基于身体健康, 同时也应免遭精神痛苦[10, 25]。
在很长的时间里, 人们一直在争论鱼类是否应该与哺乳动物一样享有福利的权利, 其中最大的争论点就在于鱼类是否能够感受痛苦。有相关学者认为鱼类与哺乳动物的脑部结构不同, 并不能感受痛苦[26]。然而随着越来越多的科研证据的出现, 更多的人们相信鱼类作为水产动物中相对高等的脊椎动物, 其身体上具有感知外部环境的感受器, 并具有感受痛觉、应对痛觉的能力[27—29]。有研究发现, 虹鳟(Oncorhynchus mykiss)的皮肤和眼角膜中存在多种伤害感受器, 包括多元痛觉感受器、热感受器、化学刺激感受器, 能够对不同类型的组织损伤产生反应[30]。当鱼体受到损伤时, 被称为伤害感受器的特殊感受器会检测到损伤, 并将有关损伤的信号通过专门的无髓纤维(C-fibres)和有髓纤维(A-delta)传递到脊髓, 进而触发一系列的生理变化[31]。鱼类大脑和脊髓组成的中枢神经系统通过周围神经系统与感觉器官和骨骼肌相连, 在面对痛苦应激时会表现出复杂的生理和行为反应[9], 例如鲑类会在感受到痛苦后表现出警戒行为即回避痛苦体验, 并在疼痛期间暂停进食[28]。鲤(Cyprinus carpio)在痛苦经历中表现出一定的学习能力, 即垂钓试验中避免接触鱼钩[32]。这些研究说明鱼类能够感受外界的有害环境并做出行为上的反应, 也应该享受与畜禽动物相同的福利。
进入21世纪后, WOAH发布了关于动物福利的相应标准, 于2001年到2005年, 将包括鱼类福利在内的动物福利确定为其战略计划的重点领域[33], 并于2008年在《水生动物卫生法典》中添加水生动物福利标准。此外, 欧洲食品安全局在2004年发表了关于养殖鱼类运输和宰杀方法的科学意见[34], 并于2008—2009年发表关于鱼类福利和养殖系统的科学意见, 内容涉及大西洋鲑(Salmo salar)、鲤、海鲈(Dicentrarchus labrax)、金头鲷(Sparus aurata)、虹鳟、欧洲鳗鲡(Anguilla anguilla)、大菱鲆(Scophthalmus maximus)和蓝鳍金枪鱼(Thunnus thynnus)的击晕和捕捞方法, 以及关于鱼类福利和感知的科学报告[35]。欧盟也在2006年通过了《动物健康和福利政策》, 明确提出要关注包括鱼类在内的水生动物福利问题。另一方面许多国家也将鱼类福利写进相关法律, 包括挪威动物保护法(Norwegian Animal Protection Act)、挪威动物福利法(Norwegian Animal Welfare Act)和新西兰动物福利法(New Zealand Animal Welfare Act)等[36]。
我国的许多学者也对鱼类福利的现状进行了相关的研究, 例如吕青等[37]于2009年阐述了水产养殖动物福利的要求。李贤和刘鹰[14]在2014年综述了水产养殖过程中的鱼类福利问题。冯东岳和尤华[38]在2015年综述了开展福利养殖对水产发展的意义。刘笑天等[39]在2016年就如何提高水产养殖动物福利水平提出建议。张洁若[40]在2019年从生长、血清生化、能量代谢、氧化应激及免疫性能等方面阐述了养殖密度对鱼类福利的影响。黄六一等[41]在2022年综述了海上风场对鱼类福利的研究进展。刘俊荣等[9]在2024年综述了鱼类福利与水产品品质的关系。在鱼类福利的立法方面, 我国分别在1986年、1988年和1993年颁布了《渔业法》、《野生动物保护法》和《水生野生动物保护实施条例》[38, 39]。此外, 鱼类福利和健康养殖在国家“十二五”科技发展计划中被列为重点规划内容和支持方向, 并在2013年度被国家自然科学基金生命学部列为重点支持研究方向之一。目前来说, 虽然我国陆续出台了保护水生动物的法规, 但是其内容局限性较大, 针对鱼类福利的内容较为单薄, 总体上以鱼类福利为主的立法还在处于不断研讨、立项的阶段[42, 43]。
2. 养殖空间对鱼类行为的影响
在动物福利中, 行为福利代表着动物表达天性的自由而具有重要意义。鱼类的行为反映了鱼体对环境的适应情况, 也是直观评估鱼类福利整体状况的重要指标[44]。在养殖过程中, 高养殖密度降低了鱼类对养殖空间的利用程度, 影响了鱼类自由游泳行为, 导致机体消耗额外的能量来应对拥挤胁迫, 进而减少用于生长的能量, 这会不利于鱼类的生长[45, 46]。大西洋庸鲽(Hippoglossus hippoglossus)在拥挤胁迫下会增加自身的上浮行为来适应加剧的底栖空间竞争[47]。BégoutAnras和Lagardère[48]发现虹鳟在低密度条件下表现出相对水流静止和昼夜差异的游泳行为特征, 但高养殖密度会使此类行为特征消失。Boujard等[49]发现虹鳟在不同养殖密度组中的竞食活力存在显著差异。随着养殖密度的增加, 云纹犬牙石首鱼(Cynoscion nebulosus)幼鱼、尼罗罗非鱼(Oreochromis niloticus)幼鱼和非洲鲶(Clarias gariepinus)群体内部的竞争加剧, 活跃度显著升高[50—52]。北极红点鲑(Salvelinus alpinus)在拥挤胁迫条件下会减少主动交互和学习行为[53]。Gonçalves-de-Freitas等[54]发现尼罗罗非鱼的攻击行为在高养殖密度组中有所增加。Kaiser等[55]发现养殖密度显著影响非洲鲶的攻击行为, 与低密度组和高密度组相比, 中密度组的攻击行为最低; 而Baras和Jobling[56]的研究表明高养殖密度降低了鱼类的攻击行为, 如此不同的研究结果可能与养殖鱼类的品种、养殖环境、养殖实验的持续时间等因素有关。养殖密度的增加还会限制尼罗罗非鱼的游泳速度, 增加摄食行为所消耗的时间[57]。
相同的养殖密度下, 不同养殖空间的大小也能够对动物的行为产生一定的影响, 在斑马鱼(Danio rerio)的研究中, Shishis等[58]分析了养殖空间和养殖密度对其游泳行为的交互作用, 证实了养殖空间和养殖密度均会影响斑马鱼的游泳行为, 包括不动时间, 游泳速度, 转角等指标。Maierdiyali等[59]通过一系列的行为学实验, 发现生活在狭小空间中的斑马鱼表现得更加“谨小慎微”, 并具有较弱的顶游耐力, 而生活在较大的养殖空间的斑马鱼则表现得更加大胆; 此外, 其他的研究也显示较大的养殖空间能够显著增加斑马鱼的运动活性[60]。除了模式生物斑马鱼, 养殖空间也会影响其他鱼类的行为。美洲红点鲑(Salvelinus fontinalis)在不同的养殖空间会表现出不同的游泳行为, 在较大的养殖空间中的游泳速度显著高于小空间实验组[61]。Polverino等[62]发现缸体的大小会影响东部食蚊鱼(Gambusia holbrooki)的运动活性和社会等级, 并指出空间大小对其社会等级的影响与东部食蚊鱼的发育阶段有关。Evsiukova等[63]的研究发现不同的养殖空间会影响绿松石鳉(Nothobranchius furzeri)在新型水缸潜水实验中的行为表现, 证实较小的养殖空间会增加绿松石鳉在水箱底部的停留时间并减少其进入上层水区的频率, 这可能与绿松石鳉在较小的空间组中拥有较少的单胺类神经递质(去甲肾上腺素和多巴胺)含量有关。以上内容显示鱼类的游泳行为、摄食行为、社会互动行为、学习行为等或许可以作为反映鱼类在不同养殖密度和养殖空间下的福利状态的具体指标。然而目前虽有一些研究报道了养殖密度与空间对鱼类行为的影响, 但是具体的分子机制还需要进一步的解析, 因此探究不同养殖密度与空间下行为的具体变化机制可能是未来的研究重点之一。
3. 养殖空间对鱼类下丘脑−垂体−肾间轴的影响
生理响应是评价鱼类福利的重要指标之一[64]。在养殖设施中不断增加鱼类养殖密度, 容易使鱼类受到空间拥挤的应激胁迫, 由高密度养殖而引起的拥挤胁迫会引起多种生理变化, 造成鱼类的应激反应[65]。随着集约化养殖的不断发展, 长期的高密度养殖已经成为一种慢性应激因子, 并能够显著加剧鱼类的应激反应, 损害鱼体的生长、代谢及免疫功能[3]。高养殖密度带来的空间变化会改变鱼体内下丘脑−垂体−肾间轴(hypothalamus-pituitary-interrenal axis, HPI轴)的活性, 进而影响应激激素的含量[44]。Zheng等[17]的实验发现拥挤胁迫能够显著上调大口黑鲈脑和头肾中的HPI轴相关基因的表达。皮质醇是硬骨鱼体内最丰富的皮质类固醇, 被认为是应激反应的重要标志, 也是反映鱼类福利状态的重要指示因子[66]。高养殖密度显著升高草鱼[11]、虹鳟[67]、中华鲟(Acipenser sinensis)[68]、萨拉小鲃(Puntius sarana)[69]、施氏鲟(Acipenser schrencki)[70]、斑点叉尾鮰(Ictalurus punctatus)[71]等多种鱼类血清中的皮质醇含量。Skrzynska等[72]在对金头鲷进行食物剥夺和高密度养殖后测定其血清皮质醇变化, 发现高养殖密度组的血清皮质醇水平显著高于食物剥夺处理组。在对虹鳟的圈养研究中发现, 在整个养殖周期的前120天高密度养殖会使虹鳟血浆中皮质醇的浓度增加, 但在300d后皮质醇浓度会显著下降[73]。也有研究表明, 不同的养殖密度(10、40和100 kg/m3)对海鲈体内的皮质醇水平无明显影响[74]。养殖密度对于鱼类体内皮质醇含量的不同影响可能与鱼类的具体品种和具体的实验密度设置有关。另一方面, 养殖密度升高带来的空间变化也可通过能量代谢的变化来影响鱼类对应激的反应, 主要是对血液中葡萄糖浓度的监测来了解鱼类对于应激的响应, 血糖的变化趋势与所受到的应激程度呈现正相关关系, 但其灵敏度与皮质醇相比较略低[75]。研究发现, 拥挤胁迫下的空间变化导致斑马鱼的血糖水平出现先升高后下降的趋势[76]; 尼罗罗非鱼肝脏中的葡萄糖含量在高养殖密度组中显著增加[77]。
以上的研究均显示特定的空间下高养殖密度会引起的鱼类应激反应。除此之外, 养殖空间大小发生变化会对鱼类的应激反应产生不同效果, 能够显著影响鱼类的神经内分泌系统。斑马鱼的体内皮质醇含量会在不同的养殖空间中表现出一定的差异[59, 78]。Samaras等[8]的研究指出, 与小空间养殖组相比, 在较大养殖空间中的欧洲海鲈的血浆皮质醇与葡萄糖含量显著降低, 并发现较大的养殖空间会显著降低HPI轴相关基因mr (mineralocorticoid receptor)与gr (glucocorticoid receptor)的比值。然而Lika等[79]的研究结果与Samaras等[8]的研究结果相反, 并没有发现养殖空间对欧洲海鲈全身皮质醇含量的影响作用, 这可能与两个实验的具体养殖空间设计不同有关。Xu等[80]研究了相同密度下不同养殖空间(5, 10, 15, 20 L)对稀有鮈鲫(Gobiocypris rarus)的影响作用, 发现稀有鮈鲫在10 L养殖空间组中的皮质醇含量显著低于其他组, 这显示鱼类可能会在某个适宜的养殖空间下表现出最佳的生存状态。以上的研究显示养殖密度与养殖空间导致的空间变化均会显著影响鱼类的应激反应, 但是相关的实验大都是将二者分开来单独研究, 几乎没有同时涉及二者的双因素实验设计, 或许鱼类在高养殖密度下的应激反应会在不同的养殖空间中有所变化, 这也需要科研人员在未来进行更多的研究去探索空间变化对鱼类的生物学效应。
4. 养殖空间对鱼类生长性能的影响
在一定空间的养殖设施中, 随着养殖密度的升高, 鱼类周围的活动空间会产生变化, 拥挤造成的应激会导致鱼类的生长受到显著的抑制[3]。此外, 也有研究证实高养殖密度能够影响多种鱼类的摄食和饲料转化效率进而影响其生长状况[70, 81, 82]。Lu等[20]在关于草鱼和团头鲂的研究中发现, 随着密度的增加, 草鱼与团头鲂的终末体重、终末体长、增重率和特定生长率显著下降, 饵料系数显著升高, 鱼类生长受到一定的抑制。Mylonas等[83]和Wagner等[84]分别在大西洋鲑和虹鳟的研究中发现肥满度会随着养殖密度的升高而显著降低。这些研究结果可能是由于高密度造成的生存空间的减少和饲料竞争所造成的[85]。然而, 也有研究发现北极红点鲑[86]、日本黄姑鱼(Argyrosomus japonicus)[87]和大西洋白姑鱼(Argyrosomus regius)[88]等鱼类在高养殖密度的条件下摄食率较高, 生长较好。在一些关于欧洲鳇(Huso huso)[89]和金鱼(Carassius auratus L.)[90]的研究中发现养殖密度并没有对于其生长产生影响, 这显示对于不同种的鱼类, 养殖密度的影响作用有所不同。此外, 养殖密度对鱼类生长的影响也与相同物种的不同生理阶段有关, 例如Greaves和Tuene[91]发现与大西洋庸鲽成鱼相比, 其幼鱼的生长性能反而在高密度组中表现较好。
生长激素(growth hormone, GH)/胰岛素样生长因子(insulin-like growth factors, IGFs)轴在哺乳动物和硬骨鱼的生长控制中的重要作用已经得到证实[92]。研究发现, 不适宜的放养密度导致的拥挤胁迫会显著影响鱼类的GH/IGFs轴活性[93], 进而影响鱼类的生长。Ren等[94]报道, 拥挤应激降低了施氏鲟血清GH和IGF-1含量、脑中gh的表达水平和肝脏中ghr的表达水平; Wang等[95]发现高养殖密度显著降低革胡子鲶(Clarias gariepinus)幼鱼的垂体gh基因mRNA相对表达量。也有研究显示拥挤胁迫显著降低了欧洲鳇和大菱鲆的血清IGF-1含量[96, 97]。Zheng等[17]报道了拥挤胁迫会显著降低大口黑鲈肝脏中的GH/IGFs轴相关基因ghra和igf2r的基因表达水平。高养殖密度对鱼类生长发育和生理功能的消极影响还与甲状腺激素(thyroid hormones, THs)的分泌与代谢有关[70]。研究显示, 拥挤胁迫所引起的鱼类生长下降和其它生理机能的下降与THs水平显著下降具有显著相关性[98]。拥挤胁迫带来的空间变化显著减少了虹鳟、美洲红点鲑、杂交鲟[达氏鳇(Huso dauricus)♀×施氏鲟♂]血浆四碘甲状腺原氨酸(Thyroxine, T4)含量, 并导致生长的下降[99—101]。拥挤胁迫还能够造成鱼类血浆三碘甲状腺原氨酸(3, 5, 3’ -triiodothyronine, T3)、游离三碘甲状腺原氨酸(free triiodothyronine, FT3)和游离四碘甲状腺原氨酸(free thyroxine, FT4)水平的显著下降[65, 70]。有研究发现网箱中养殖的虹鳟血清FT3和FT4的含量均随着养殖密度的升高而逐渐降低[102]。有关于杂交鲟(达氏鳇♀×施氏鲟♂)的研究表明, 养殖密度能引起其血清THs水平的变化, 高密度处理组血清THs表现为T3随养殖密度的上升和养殖时间的推移而上升, 但T4却表现为相反的结果[101]。EL-Khaldi等[103]报道了急性拥挤胁迫导致尼罗罗非鱼血浆T3和T4的含量显著下降。
以上的研究显示养殖密度会挤压鱼类活动空间影响鱼类生长, 此外, 研究发现相同密度下, 养殖设施空间的大小同样会影响鱼类生长。例如锦鲤在较大的养殖空间中生长状况好于较小的养殖空间[6]。与较小的养殖空间相比, 大西洋鲑在较大的养殖空间中表现出更好的生长效率和更活跃的游泳行为[7]。类似地, Boeuf和Gaignon[104]的研究也发现幼年大西洋鲑在较大的养殖缸中生长速度较快; 相比于较小的网箱空间组, 更大的网箱空间里饲养的欧洲海鲈具有更低的饵料系数、更高的存活率和更大的终末体重[8]。Lika等[79]发现与养殖在40 L体积养殖缸中的欧洲海鲈相比, 生活在较大养殖空间(2000和500 L)中的欧洲海鲈具有较快的生长速率。此外, 养殖空间对鱼类的繁殖能力也会有一定的影响, Goolish等[105]发现斑马鱼的产卵量会随养殖缸的体积的减小而显著下降; 类似地, Buchet等[106]证实海鲈在较大的养殖空间中具有更快的生长速率和更好的繁殖能力, 并指出最适合海鲈繁殖的最小缸体体积应不小于3 m3。较大养殖空间对鱼类生长的积极影响可能与鱼类群体规模和较大的活动空间有关, 这会导致不同的社会行为、食物需求和生理状态[63, 107]。然而, 也有研究表明生活在较大养殖空间(11.6 m3)的欧洲大西洋鲟(Acipenser sturio)并没有表现出比生活在较小养殖空间(6.8 m3)的欧洲大西洋鲟更佳的生长性能[108]。Ranta和Pirhonen[109]发现, 在43升和15升的水箱中饲养的虹鳟的生长没有差异, 但在较大的养殖空间中会消耗更多的饲料, 降低饵料效率。Bukhari等[110]发现相较于大养殖空间组(60 m3), 金带蓝子鱼(Siganus rivulatus)饲养在较小的养殖空间(10 m3)中表现出更好的存活率、生长和繁殖性能。这些研究结果表明较大的养殖空间对鱼类生长的影响既会表现出积极促进的作用, 也会表现出一定的负面作用, 这样的差异可能与鱼的种类、发育阶段、养殖时间、养殖密度、养殖空间设计以及水体的差异有关。
5. 养殖空间对鱼类健康的影响
在养殖过程中, 随着养殖密度的升高, 鱼类在养殖缸中的活动自由度会不断下降, 因此引起的拥挤胁迫会影响鱼类的健康状态进而降低鱼类的生长性能[3]。高养殖密度引起的拥挤胁迫会增加鱼类之间的身体接触, 以及鱼类与其他物体的接触, 这会增加鱼类的机械性损伤, 损害鱼类福利, 例如鳍条的磨损[44]。Sneddon等[1]已经证实鱼类的鳍中存在着疼痛感受器, 能够对疼痛做出一定的反应, 因此可以用来当作评价鱼类福利的指标之一。已有研究显示, 养殖密度的增加能够加剧欧洲海鲈鳍的磨损程度[111]。Turnbull等[112]评估了网箱养殖中养殖密度对大西洋鲑鳍的影响, 发现随着养殖密度的增加, 大西洋鲑鳍的损伤程度会不断加剧。另外, 死亡率或存活率也是反映鱼类健康状态的重要指标, 已有研究显示空间的变化能够显著影响鱼类的存活率, 如拥挤胁迫能够显著降低斑点叉尾鮰[113]、漠斑牙鲆(Paralichthys lethostigma)[114]、尼罗罗非鱼[115]和鲮(Cirrhinus molitorella)[116]的存活率。此外, 有研究发现锦鲤在较大的养殖空间中成活率较高, 健康状况好于较小的养殖空间[6]。与较小的养殖空间相比, 大西洋鲑在较大的养殖空间中表现出更好的生长效率, 具有更小的死亡率和更活跃的游泳行为[7]。
鱼体应激时血清免疫参数水平的变化可以反映鱼体健康状况[117]。高养殖密度诱导的拥挤胁迫可抑制鱼类免疫反应, 抑制鱼类生长[118]。一些研究报道了高养殖密度饲养下的草鱼[11]、施氏鲟[119]、中华鲟[68]、虹鳟[67]、尼罗罗非鱼[77]等多种鱼类的体内溶菌酶活性、补体含量和免疫球蛋白含量显著降低。Lin等[120]通过长期的拥挤胁迫实验发现高养殖密度能够显著降低草鱼血清溶菌酶、酸性磷酸酶和碱性磷酸酶的活性, 上调脾脏促炎和凋亡相关基因的表达, 降低草鱼非特异性免疫能力。Li等[11]发现高养殖密度导致的拥挤应激能够显著上调草鱼TLR4/NF-κB信号通路相关基因, 促进下游炎症因子的表达, 并下调mTOR信号通路相关基因及下游抗炎因子的表达, 进而诱导持续的炎症反应, 导致脾脏组织损伤, 降低草鱼的免疫力。
6. 展望
综合来说, 养殖设施空间的变化能够从生长、行为、健康等多个方面来影响鱼类的福利。目前, 设施化养殖是我国渔业现代化发展的必然方向, 设计适宜的渔业设施养殖空间对于在高密度集约化养殖模式下缓解鱼类的应激状态、促进鱼类健康生长、以及保障鱼类福利具有重要意义。开展关于养殖空间对鱼类福利的影响的研究, 将有助于我们从生物学角度为渔业设施的科学设计提供基础数据。这对于设施化渔业的绿色可持续发展具有重大的推动作用。虽然有较多科学家关注到养殖空间和养殖密度的研究, 也有较多研究报道了养殖空间对鱼类生长及行为的影响, 但对养殖空间影响鱼类福利的具体机制的研究仍需持续加强。
未来, 一是要系统研究养殖鱼类对设施空间变化的生理响应机制, 从神经行为、健康免疫、内分泌调控、生长代谢等方面综合探讨鱼类对空间响应的机制, 特别是要阐明鱼类对空间感知的神经生理机制与兴奋传导途径, 解释不同种类鱼类在不同大小养殖空间中表现出来的生理差异的原因。二是要综合研究养殖空间大小与鱼类密度之间交互的生物学效应, 在养殖设施空间设计时须充分考虑鱼类行为和健康等福利需求, 提出不同养殖鱼类的设施渔业空间设计参考标准, 既要设计符合生产效率需求的适宜放养密度, 也要为鱼类提供适宜的活动空间, 这样将能在保障鱼类福利的基础上获得更优的养殖效益。
-
[1] 王玉堂. 我国设施水产养殖业的发展现状与趋势 [J]. 中国水产, 2012(10): 7-10.] doi: 10.3969/j.issn.1002-6681.2012.10.003 Wang Y T. Development status and trend of facility aquaculture industry in China [J]. China Fisheries, 2012(10): 7-10. [ doi: 10.3969/j.issn.1002-6681.2012.10.003
[2] 崔利锋, 李明爽, 张龙, 等. 现代设施水产养殖发展潜力研究 [J]. 中国水产, 2024(2): 25-34.] doi: 10.3969/j.issn.1002-6681.2024.2.zhongguosc202402017 Cui L F, Li M S, Zhang L, et al. Research on the potentialities of modern facilities aquaculture development [J]. China Fisheries, 2024(2): 25-34. [ doi: 10.3969/j.issn.1002-6681.2024.2.zhongguosc202402017
[3] Zhao H H, Soufan O, Xia J G, et al. Transcriptome and physiological analysis reveal alterations in muscle metabolisms and immune responses of grass carp (Ctenopharyngodon idellus) cultured at different stocking densities [J]. Aquaculture, 2019(503): 186-197.
[4] Kaufmana B M, Pouliota A L, Tiefenbachera S, et al. Short and long-term effects of a substantial change in cage size on individually housed, adult male rhesus monkeys (Macaca mulatta) [J]. Applied Animal Behaviour Science, 2004, 88(3-4): 319-330. doi: 10.1016/j.applanim.2004.03.012
[5] Polverino G, Manciocco A, Vitale A, et al. Stereotypic behaviours in Melopsittacus undulatus: Behavioural consequences of social and spatial limitations [J]. Applied Animal Behaviour Science, 2015(165): 143-155.
[6] Jha P, Barat S, Nayak C R. A comparison of growth, survival rate and number of marketable koi carp produced under different management regimes in earthen ponds and concrete tanks [J]. Aquaculture International, 2006, 14(6): 615-626. doi: 10.1007/s10499-006-9059-9
[7] Espmark Å M, Kolarevic J, Åsgård T, et al. Tank size and fish management history matters in experimental design [J]. Aquaculture Research, 2017, 48(6): 2876-2894. doi: 10.1111/are.13121
[8] Samaras A, Pavlidis M, Lika K, et al. Scale matters: performance of European sea bass, Dicentrarchus labrax, L. (1758), reared in cages of different volumes [J]. Aquaculture Research, 2017, 48(3): 990-1005. doi: 10.1111/are.12942
[9] 刘俊荣, 刘悦朋, 徐昙烨. 养殖鱼类的动物福利与产品品质 [J]. 水产学报, 2024, 48(6): 069101.] Liu J R, Liu Y P, Xu T Y. A review of animal welfare in farmed fish and impacts on product quality [J]. Journal of Fisheries of China, 2024, 48(6): 069101. [
[10] Ashley P J. Fish welfare: Current issues in aquaculture [J]. Applied Animal Behaviour Science, 2007, 104(3/4): 199-235.
[11] Li W H, Li D P, Yang Q S, et al. Long-term crowding stress induces chronic inflammatory response and declines the immunity of grass carp (Ctenopharyngodon idella) [J]. Aquaculture, 2023(577): 739976.
[12] Wu X L, Li D P, Lu J M, et al. Adaptation strategies of juvenile grass carp (Ctenopharyngodon idella) facing different dissolved oxygen concentrations in a recirculating aquaculture system [J]. Water Biology and Security, 2023, 2(4): 100202. doi: 10.1016/j.watbs.2023.100202
[13] Jinagool P, Wipassa V, Chaiyasing R, et al. Effect of increasing ambient temperature on physiological changes, oxidative stress, nitric oxide, total antioxidant power, and mitochondrial activity of Nile tilapia (Oreochromis niloticus Linn.) [J]. Aquaculture, 2024(589): 741017.
[14] 李贤, 刘鹰. 水产养殖中鱼类福利学研究进展 [J]. 渔业现代化, 2014, 41(1): 40-45.] doi: 10.3969/j.issn.1007-9580.2014.01.009 Li X, Liu Y. Current research advances on fish welfare in aquaculture [J]. Fishery Modernization, 2014, 41(1): 40-45. [ doi: 10.3969/j.issn.1007-9580.2014.01.009
[15] 黄宁宇, 程起群, 高露娇, 等. 流速、温度对西伯利亚鲟幼鱼生长的影响 [J]. 水产学报, 2007, 31(1): 31-37.] Huang N Y, Cheng Q Q, Gao L J, et al. Effect of water current and temperature on growth of juvenile Acipenser baeri [J]. Journal of Fisheries of China, 2007, 31(1): 31-37. [
[16] Sun X Y, Zhu C C, Liu W, et al. Molecular characterization and expression of Megalobrama amblycephala (Wuchang bream) lysine monomethylase set7 and its potential role in hypoxia adaptation [J]. Aquaculture Reports, 2023(33): 101774.
[17] Zheng J L, Zhang H T, Gao L, et al. Combined effects of crowding stress and low salinity on GH/IGF axis, antioxidant response, and HPI axis in largemouth bass (Micropterus salmoides) larvae [J]. Aquaculture, 2024(578): 740036.
[18] Wang S D, Li X, Zhang M Z, et al. Ellagic acid can mitigate chronic ammonia stress-induced adverse effects through the augmentation of liver autophagy in yellow catfish (Pelteobagrus fulvidraco) [J]. Aquaculture, 2024(592): 741171.
[19] Lee C J, Paull G C, Tyler C R. Improving zebrafish laboratory welfare and scientific research through understanding their natural history [J]. Biological Reviews, 2022, 97(3): 1038-1056. doi: 10.1111/brv.12831
[20] Lu J M, Li S D, He X G, et al. An in-pond tank culture system for high-intensive fish production: effect of stocking density on growth of grass carp (Ctenopharyngodon idella Valenciennes, 1844) and blunt snout bream (Megalobrama amblycephala Yih, 1955) [J]. Aquaculture, 2022(549): 737808.
[21] Broom D M. Animal welfare: concepts and measurement [J]. Journal of Animal Science, 1991, 69(10): 4167-4175. doi: 10.2527/1991.69104167x
[22] Royal Society for the Prevention of Cruelty to Animals. Report of the Panel of Enquiry into Shooting and Angling (1976-1979) [M]. London: Panel of Enquiry into Shooting and Angling, 1980: 173-177.
[23] Lymbery P. Welfare of farmed fish [J]. Veterinary Record, 1992, 131(1): 19-20.
[24] Farm Animal Welfare Council. Report on Priorities for Animal Welfare Research and Development [M]. Surbiton, Surrey: Farm Animal Welfare Council, 1993: 1-26.
[25] Huntingford F A, Adams C, Braithwaite V A, et al. Current issues in fish welfare [J]. Journal of Fish Biology, 2006, 68(2): 332-372. doi: 10.1111/j.0022-1112.2006.001046.x
[26] Rose J D. The neurobehavioral nature of fishes and the question of awareness and pain [J]. Reviews in Fisheries Science, 2002, 10(1): 1-38. doi: 10.1080/20026491051668
[27] Sneddon L U. The evidence for pain in fish: the use of morphine as an analgesic [J]. Applied Animal Behaviour Science, 2003, 83(2): 153-162. doi: 10.1016/S0168-1591(03)00113-8
[28] Sneddon L U, Braithwaite V A, Gentle M J. Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system [J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(1520): 1115-1121. doi: 10.1098/rspb.2003.2349
[29] Chandroo K P, Duncan I J H, Moccia R D. Can fish suffer? perspectives on sentience, pain, fear and stress [J]. Applied Animal Behaviour Science, 2004, 86(3-4): 225-250. doi: 10.1016/j.applanim.2004.02.004
[30] Sneddon L U. Trigeminal somatosensory innervation of the head of a teleost fish with particular reference to nociception [J]. Brain Research, 2003, 972(1-2): 44-52. doi: 10.1016/S0006-8993(03)02483-1
[31] Braithwaite V A, Ebbesson L O E. Pain and stress responses in farmed fish [J]. Revue Scientifique et Technique-Office International Des Epizooties, 2014, 33(1): 245-253.
[32] Beukema J J. Angling experiments with carp (Cyprinus carpio L.) II. Decreasing catchability through one-trial learning [J]. Netherlands Journal of Zoology, 1970, 20(1): 81-92.
[33] Lund V, Mejdell C M, Röcklinsberg H, et al. Expanding the moral circle: farmed fish as objects of moral concern [J]. Diseases of Aquatic Organisms, 2007, 75(2): 109-118.
[34] European Food Safety Authority (EFSA). Food Safety considerations of animal welfare aspects of husbandry systems for farmed fish - Scientific opinion of the Panel on Biological Hazards [J]. EFSA Journal, 2008, 6(12): 867. doi: 10.2903/j.efsa.2008.867
[35] European Food Safety Authority (EFSA). Food Safety considerations concerning the species-specific welfare aspects of the main systems of stunning and killing of farmed fish [J]. EFSA Journal, 2009, 7(7): 1190. doi: 10.2903/j.efsa.2009.1190
[36] Kristiansen T S, Fernö A, Pavlidis M A, et al. The Welfare of Fish [M]. Cham: Springer International Publishing, 2020: 1-515.
[37] 吕青, 杨志刚, 陈恩成. 动物福利及GAP对水产养殖的福利要求 [J]. 科学养鱼, 2009(3): 40-41.] Lü Q, Yang Z G, Chen E C. Animal welfare and request of GAP to aquaculture [J]. Scientific Fish Farming, 2009(3): 40-41. [
[38] 冯东岳, 尤华. 浅析动物福利与水产健康养殖 [J]. 中国动物检疫, 2015(6): 52-55.] doi: 10.3969/j.issn.1005-944X.2015.06.015 Feng D Y, You H. Analysis on animal welfare and aquaculture [J]. China Animal Health Inspection, 2015(6): 52-55. [ doi: 10.3969/j.issn.1005-944X.2015.06.015
[39] 刘笑天, 王培磊, 张亚男, 等. 水产养殖动物福利综述 [J]. 水产研究, 2016, 3(4): 82-87.] doi: 10.12677/OJFR.2016.34013 Liu X T, Wang P L, Zhang Y N, et al. Review of aquatic animal welfare [J]. Open Journal of Fisheries Research, 2016, 3(4): 82-87. [ doi: 10.12677/OJFR.2016.34013
[40] 张洁若. 养殖密度对鱼类福利影响的研究进展 [J]. 渔业致富指南, 2019(16): 14-20.] Zhang J R. Research progress on the effects of stocking density on fish welfare [J]. Fishery Guide to be Rich, 2019(16): 14-20. [
[41] 黄六一, 王羿宁, 黄桂芳, 等. 海上风电场对鱼类福利的影响研究进展 [J]. 水产学报, 2022, 46(11): 2226-2240.] Huang L Y, Wang Y N, Huang G F, et al. Advances in research on the effects of offshore wind farm on fish welfare [J]. Journal of Fisheries of China, 2022, 46(11): 2226-2240. [
[42] 牛瑞燕, 孙子龙, 李候梅. 动物福利的现状与对策 [J]. 动物医学进展, 2006, 27(2): 108-111.] doi: 10.3969/j.issn.1007-5038.2006.02.030 Niu R Y, Sun Z L, Li H M. Current situation and countermeasures of animal welfare [J]. Progress in Veterinary Medicine, 2006, 27(2): 108-111. [ doi: 10.3969/j.issn.1007-5038.2006.02.030
[43] 徐鹏, 何燕, 黄娇. 浅谈水生动物的福利问题 [J]. 中国水产, 2021(8): 53-55.] Xu P, He Y, Huang J. On the welfare of aquatic animals [J]. China Fisheries, 2021(8): 53-55. [
[44] 刘宝良, 雷霁霖, 贾睿, 等. 养殖密度对鱼类福利影响研究进展 [J]. 中国工程科学, 2014, 16(9): 100-105.] Liu B L, Lei J L, Jia R, et al. A review: The influence of stocking density on fish welfare [J]. Strategic Study of CAE, 2014, 16(9): 100-105. [
[45] 王国强, 王雯. 应激反应对鱼类影响的研究进展 [J]. 安徽农业科学, 2009, 37(24): 11579-11580.] Wang G Q, Wang W. Research progress in the effect of the stress response on fish [J]. Journal of Anhui Agricultural Sciences, 2009, 37(24): 11579-11580. [
[46] Arechavala-Lopez P, Nazzaro-Alvarez J, Jardí-Pons A, et al. Linking stocking densities and feeding strategies with social and individual stress responses on gilthead seabream (Sparus aurata) [J]. Physiology & Behavior, 2020(213): 112723.
[47] Kristiansen T S, Fernö A, Holm J C, et al. Swimming behaviour as an indicator of low growth rate and impaired welfare in Atlantic halibut (Hippoglossus hippoglossus L.) reared at three stocking densities [J]. Aquaculture, 2004, 230(1-4): 137-151. doi: 10.1016/S0044-8486(03)00436-8
[48] Bégout Anras M L, Lagardère J P. Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks [J]. Aquaculture, 2004, 240(1-4): 175-186. doi: 10.1016/j.aquaculture.2004.02.019
[49] Boujard T, Labbé L, Aupérin B. Feeding behaviour, energy expenditure and growth of rainbow trout in relation to stocking density and food accessibility [J]. Aquaculture Research, 2002, 33(15): 1233-1242. doi: 10.1046/j.1365-2109.2002.00755.x
[50] Manley C B, Rakocinski C F, Lee P G, et al. Stocking density effects on aggressive and cannibalistic behaviors in larval hatchery-reared spotted seatrout, Cynoscion nebulosus [J]. Aquaculture, 2014(420-421): 89-94.
[51] Fessehaye Y, Kabir A, Bovenhuis H, et al. Prediction of cannibalism in juvenile Oreochromis niloticus based on predator to prey weight ratio, and effects of age and stocking density [J]. Aquaculture, 2006, 255(1-4): 314-322. doi: 10.1016/j.aquaculture.2005.11.033
[52] Wenzel L C, Berchtold E, Palm H W. Effects of stocking density and grading on behaviour, cannibalism and performance of African catfish (Clarias gariepinus) fry [J]. Aquaculture Reports, 2022(27): 101400.
[53] Brown G E, Brown J A, Srivastava R K. The effect of stocking density on the behaviour of Arctic charr (Salvelinus alpinus L.) [J]. Journal of Fish Biology, 1992, 41(6): 955-963. doi: 10.1111/j.1095-8649.1992.tb02722.x
[54] Gonçalves-de-Freitas E, Bolognesi M C, dos Santos Gauy A C, et al. Social behavior and welfare in Nile tilapia [J]. Fishes, 2019, 4 (2): 23.
[55] Kaiser H, Weyl O, Hecht T. The effect of stocking density on growth, survival and agonistic behaviour of African catfish [J]. Aquaculture International, 1995, 3(3): 217-225. doi: 10.1007/BF00118103
[56] Baras E, Jobling M. Dynamics of intracohort cannibalism in cultured fish [J]. Aquaculture Research, 2002, 33(7): 461-479. doi: 10.1046/j.1365-2109.2002.00732.x
[57] Abdel-Hamid S E, Shahin S E, Abouelnaga A F. Tilapia nilotica welfare in relation to economic and managerial culture [J]. Alexandria Journal of Veterinary Sciences, 2023, 76(2): 82-89. doi: 10.5455/ajvs.124917
[58] Shishis S, Tsang B, Gerlai R. The effect of fish density and tank size on the behavior of adult zebrafish: A systematic analysis [J]. Frontiers in Behavioral Neuroscience, 2022(16): 934809.
[59] Maierdiyali A, Wang L, Luo Y C, et al. Effect of tank size on zebrafish behavior and physiology [J]. Animals, 2020, 10(12): 2353. doi: 10.3390/ani10122353
[60] Stewart A M, Gaikwad S, Kyzar E, et al. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test [J]. Brain Research, 2012(1451): 44-52.
[61] Tang M, Boisclair D. Influence of the size of enclosures on the swimming characteristics of juvenile brook trout (Salvelinus fontinalis) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(8): 1786-1793. doi: 10.1139/f93-200
[62] Polverino G, Ruberto T, Staaks G, et al. Tank size alters mean behaviours and individual rank orders in personality traits of fish depending on their life stage [J]. Animal Behaviour, 2016(115): 127-135.
[63] Evsiukova V, Antonov E, Kulikov A V. Effects of sex and group size on behavior and brain biogenic amines in short-lived turquoise killifish (Nothobranchius furzeri) [J]. Zebrafish, 2021, 18(4): 265-273. doi: 10.1089/zeb.2021.0001
[64] Martins C I M, Galhardo L, Noble C, et al. Behavioural indicators of welfare in farmed fish [J]. Fish Physiology and Biochemistry, 2012, 38(1): 17-41. doi: 10.1007/s10695-011-9518-8
[65] Refaey M M, Li D P, Tian X, et al. High stocking density alters growth performance, blood biochemistry, intestinal histology, and muscle quality of channel catfish Ictalurus punctatus [J]. Aquaculture, 2018(492): 73-81.
[66] Mommsen T P, Vijayan M M, Moon T W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation [J]. Reviews in Fish Biology and Fisheries, 1999, 9(3): 211-268. doi: 10.1023/A:1008924418720
[67] Yarahmadi P, Miandare H K, Fayaz S, et al. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss) [J]. Fish & Shellfish Immunology, 2016(48): 43-53.
[68] Long L N, Zhang H G, Ni Q, et al. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019(219): 25-34.
[69] Upadhyay A, Swain H S, Das B K, et al. Stocking density matters in open water cage culture: influence on growth, digestive enzymes, haemato-immuno and stress responses of Puntius sarana (Ham, 1822) [J]. Aquaculture, 2022(547): 737445.
[70] Li D P, Liu Z D, Xie C X. Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii [J]. Fish Physiology and Biochemistry, 2012, 38(2): 511-520. doi: 10.1007/s10695-011-9531-y
[71] Refaey M M, Li D P, Tian X, et al. Physiological responses of channel catfish (Ictalurus punctatus) reared at different stocking densities in a recirculating aquaculture system [J]. Aquaculture, 2022(557): 738329.
[72] Skrzynska A K, Martos-Sitcha J A, Martínez-Rodríguez G, et al. Unraveling vasotocinergic, isotocinergic and stress pathways after food deprivation and high stocking density in the gilthead sea bream [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2018(215): 35-44.
[73] Liu Q, Hou Z S, Wen H S, et al. Effect of stocking density on water quality and (growth, body composition and plasma cortisol content) performance of pen-reared rainbow trout (Oncorhynchus mykiss) [J]. Journal of Ocean University of China, 2016, 15(4): 667-675. doi: 10.1007/s11802-016-2956-2
[74] Sammouth S, d’Orbcastel E R, Gasset E, et al. The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system [J]. Aquacultural Engineering, 2009, 40(2): 72-78. doi: 10.1016/j.aquaeng.2008.11.004
[75] Yasunari K, Maeda K, Nakamura M, et al. Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein [J]. Hypertension, 2002, 39(3): 777-780. doi: 10.1161/hy0302.104670
[76] Carnovali M, Luzi L, Terruzzi I, et al. Liquiritigenin reduces blood glucose level and bone adverse effects in hyperglycemic adult zebrafish [J]. Nutrients, 2019, 11(5): 1042. doi: 10.3390/nu11051042
[77] Liu G, Ye Z Y, Liu D Z, et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems [J]. Fish & Shellfish Immunology, 2018(81): 416-422.
[78] Ramsay J M, Feist G W, Varga Z M, et al. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio [J]. Aquaculture, 2006, 258(1-4): 565-574. doi: 10.1016/j.aquaculture.2006.04.020
[79] Lika K, Pavlidis M, Mitrizakis N, et al. Do experimental units of different scale affect the biological performance of European sea bass Dicentrarchus labrax larvae [J]? Journal of Fish Biology, 2015, 86(4): 1271-1285. doi: 10.1111/jfb.12636
[80] Xu C S, Cui Y W, Yu F D, et al. Effects of different tank sizes on laboratory rare minnow (Gobiocypris rarus)-under the same density [J]. Journal of Applied Animal Welfare Science, 2024, 27(3): 625-634. doi: 10.1080/10888705.2024.2329189
[81] Leatherland J F. Stocking density and cohort sampling effects on endocrine interactions in rainbow trout [J]. Aquaculture International, 1993, 1(2): 137-156. doi: 10.1007/BF00692617
[82] Larsen B K, Skov P V, McKenzie D J, et al. The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19 °C [J]. Aquaculture, 2012(324-325): 226-233.
[83] Mylonas C C, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction [J]. General and Comparative Endocrinology, 2010, 165(3): 516-534. doi: 10.1016/j.ygcen.2009.03.007
[84] Wagner E J, Intelmann S S, Routledge M D. The effects of fry rearing density on hatchery performance, fin condition, and agonistic behavior of rainbow trout Oncorhynchus mykiss fry [J]. Journal of the World Aquaculture Society, 1996, 27(3): 264-274. doi: 10.1111/j.1749-7345.1996.tb00608.x
[85] Yadata G W, Ji K, Liang H, et al. Effects of dietary protein levels with various stocking density on growth performance, whole body composition, plasma parameters, nitrogen emission and gene expression related to TOR signaling of juvenile blunt snout bream (Megalobrama ambylcephala) [J]. Aquaculture, 2020(519): 734730.
[86] Jørgensen E H, Christiansen J S, Jobling M. Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus) [J]. Aquaculture, 1993, 110(2): 191-204. doi: 10.1016/0044-8486(93)90272-Z
[87] Pirozzi I, Booth M A, Pankhurst P M. The effect of stocking density and repeated handling on the growth of juvenile mulloway, Argyrosomus japonicus (Temminck & Schlegel 1843) [J]. Aquaculture International, 2009, 17(2): 199-205. doi: 10.1007/s10499-008-9190-x
[88] Millán-Cubillo A F, Martos-Sitcha J A, Ruiz-Jarabo I, et al. Low stocking density negatively affects growth, metabolism and stress pathways in juvenile specimens of meagre (Argyrosomus regius, Asso 1801) [J]. Aquaculture, 2016(451): 87-92.
[89] Rafatnezhad S, Falahatkar B, Tolouei Gilani M H. Effects of stocking density on haematological parameters, growth and fin erosion of great sturgeon (Huso huso) juveniles [J]. Aquaculture Research, 2008, 39(14): 1506-1513. doi: 10.1111/j.1365-2109.2008.02020.x
[90] Niazie E H N, Imanpoor M, Taghizade V, et al. Effects of density stress on growth indices and survival rate of gold fish (Carassius auratus) [J]. Global Veterinaria, 2013, 10(3): 365-371.
[91] Greaves K, Tuene S. The form and context of aggressive behaviour in farmed Atlantic halibut (Hippoglossus hippoglossus L.) [J]. Aquaculture, 2001, 193(1-2): 139-147. doi: 10.1016/S0044-8486(00)00476-2
[92] Goldenberg N, Barkan A. Factors regulating growth hormone secretion in humans [J]. Endocrinology and Metabolism Clinics of North America, 2007, 36(1): 37-55. doi: 10.1016/j.ecl.2006.11.003
[93] Álvarez C A, Jerez-Cepa I, Cárcamo C B, et al. Growth performance, physiological responses to hypoxia and flesh quality of Chilean croaker (Cilus gilberti) stocked at different densities [J]. Aquaculture, 2020(525): 735316.
[94] Ren Y, Wen H, Li Y, et al. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis [J]. Journal of Oceanology and Limnology, 2018, 36(3): 956-972. doi: 10.1007/s00343-018-7018-8
[95] 王晓梅, 陈成勋, 邢克智, 等. 不同养殖密度下革胡子鲶幼鱼的生长和垂体GH基因mRNA表达分析 [J]. 南方水产科学, 2015, 11(3): 35-40.] Wang X M, Chen C X, Xing K Z, et al. Analysis of daily weight gain and GH mRNA expression in juvenile Clarias gariepinu reared at different stocking densities [J]. South China Fisheries Science, 2015, 11(3): 35-40. [
[96] Jia R, Liu B L, Feng W R, et al. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities [J]. Fish & Shellfish Immunology, 2016(55): 131-139.
[97] Feshalami M Y, Amiri F, Nikpey M, et al. Influence of stocking density on growth and physiological responses of beluga, Huso huso (Brandt, 1869), and ship sturgeon, Acipenser nudiventris (Lovetsky, 1828), juveniles in a flow-through system [J]. Journal of the World Aquaculture Society, 2017, 48(4): 611-622. doi: 10.1111/jwas.12376
[98] Liu Y, Liu H B, Wu W, et al. Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok) [J]. Aquaculture, 2019(504): 107-113.
[99] Leatherland J F, Cho C Y. Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gairdneri Richardson [J]. Journal of Fish Biology, 1985, 27(5): 583-592. doi: 10.1111/j.1095-8649.1985.tb03203.x
[100] Vijayan M M, Leatherland J F. Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis [J]. Aquaculture, 1988, 75(1-2): 159-170. doi: 10.1016/0044-8486(88)90029-4
[101] 张墨, 李吉方, 温海深, 等. 放养密度对大杂交鲟生长性能的影响及生理应答机制 [J]. 海洋科学, 2016, 40(8): 35-41.] doi: 10.11759//hykx20150512001 Zhang M, Li J F, Wen H S et al. Effect of stocking density on growth performance and mechanism of physiological response in hybrid sturgeon [J]. Marine Sciences, 2016, 40(8): 35-41. [ doi: 10.11759//hykx20150512001
[102] 刘群, 温海深, 李吉方, 等. 网箱养殖密度对虹鳟甲状腺激素及血脂指标的影响 [J]. 水生生物学报, 2014, 38(6): 1076-1083.] doi: 10.7541/2014.158 Liu Q, Wen H S, Li J F, et al. Effects of different stocking density on the levels of thyrioid hormone and plasma lipids in Oncorhynchus mykiss [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1076-1083. [ doi: 10.7541/2014.158
[103] EL-Khaldi A T F. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus) [J]. Saudi Journal of Biological Sciences, 2010, 17(3): 241-246. doi: 10.1016/j.sjbs.2010.04.009
[104] Boeuf G, Gaignon J L. Effects of rearing conditions on growth and thyroid hormones during smolting of Atlantic salmon, Salmo salar L [J]. Aquaculture, 1989, 82(1-4): 29-38. doi: 10.1016/0044-8486(89)90393-1
[105] Goolish E M, Evans R, Okutake K, et al. Chamber volume requirements for reproduction of the zebrafish Danio rerio [J]. The Progressive Fish-Culturist, 1998, 60(2): 127-132. doi: 10.1577/1548-8640(1998)060<0127:CVRFRO>2.0.CO;2
[106] Buchet V, Coquard E, Sévère A, et al. Influence of tank volume on vitellogenesis and spawning performances in sea bass Dicentrarchus labrax L [J]. Aquaculture Research, 2008, 39(4): 420-426. doi: 10.1111/j.1365-2109.2007.01828.x
[107] Di-Poi C, Beauchaud M, Bouchut C, et al. Effects of high food-demand fish removal in groups of juvenile sea bass (Dicentrarchus labrax) [J]. Canadian Journal of Zoology, 2008, 86(9): 1015-1023. doi: 10.1139/Z08-077
[108] Kirschbaum F, Hensel E C K, Williot P. Feeding experiments with the European Atlantic sturgeon, Acipenser sturio L., 1758 to accustom large juveniles to a new feed item and the influence of tank size and stocking density on growth [J]. Journal of Applied Ichthyology, 2006, 22 (s1): 307-315.
[109] Ranta T, Pirhonen J. Effect of tank size on food intake and growth in individually held juvenile rainbow trout Oncorhynchus mykiss (Walbaum) [J]. Aquaculture Research, 2006, 37(13): 1381-1385. doi: 10.1111/j.1365-2109.2006.01561.x
[110] Bukhari F A. Trials of rabbitfish Siganus rivulatus production in floating cages in the Red Sea [J]. Emirates Journal of Food and Agriculture, 2005, 17(2): 23-29. doi: 10.9755/ejfa.v12i1.5087
[111] Person-Le Ruyet J, Le Bayon N. Effects of temperature, stocking density and farming conditions on fin damage in European sea bass (Dicentrarchus labrax) [J]. Aquatic Living Resources, 2009, 22(3): 349-362. doi: 10.1051/alr/2009047
[112] Turnbull J, Bell A, Adams C, et al. Stocking density and welfare of cage farmed Atlantic salmon: application of a multivariate analysis [J]. Aquaculture, 2005, 243(1-4): 121-132. doi: 10.1016/j.aquaculture.2004.09.022
[113] Allen K O. Effects of stocking density and water exchange rate on growth and survival of channel catfish Ictalurus punctatus (Rafinesque) in circular tanks [J]. Aquaculture, 1974(4): 29-39.
[114] Daniels H V, Berlinsky D L, Hodson R G, et al. Effects of stocking density, salinity, and light intensity on growth and survival of southern flounder Paralichthys lethostigma larvae [J]. Journal of the World Aquaculture Society, 1996, 27(2): 153-159. doi: 10.1111/j.1749-7345.1996.tb00264.x
[115] Garcia F, Romera D M, Gozi K S, et al. Stocking density of Nile tilapia in cages placed in a hydroelectric reservoir [J]. Aquaculture, 2013(410-411): 51-56.
[116] Keer N R, Datta M K, Patel A B, et al. Effect of stocking density on growth and survival of Cirrhinus reba (Hamilton, 1822) during spawn to fry nursing (outdoor) [J]. Journal of Entomology and Zoology Studies, 2018, 6(1): 640-645.
[117] Tort L. Stress and immune modulation in fish [J]. Developmental & Comparative Immunology, 2011, 35(12): 1366-1375.
[118] Castillo-Vargasmachuca S, Ponce-Palafox J T, García-Ulloa M, et al. Effect of stocking density on growth performance and yield of subadult Pacific red snapper cultured in floating sea cages [J]. North American Journal of Aquaculture, 2012, 74(3): 413-418. doi: 10.1080/15222055.2012.676002
[119] Ni M, Wen H S, Li J F, et al. Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii) [J]. Aquaculture Research, 2016, 47(5): 1596-1604. doi: 10.1111/are.12620
[120] Lin W, Li L, Chen J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella) [J]. Fish & Shellfish Immunology, 2018(80): 540-545.
计量
- 文章访问数: 214
- HTML全文浏览量: 24
- PDF下载量: 61